BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31544889)

  • 1. Isolation and Characterization of Nanobodies against a Zinc-Transporting P-Type ATPase.
    Longhin E; Grønberg C; Hu Q; Duelli AS; Andersen KR; Laursen NS; Gourdon P
    Antibodies (Basel); 2018 Nov; 7(4):. PubMed ID: 31544889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and ion-release mechanism of P
    Grønberg C; Hu Q; Mahato DR; Longhin E; Salustros N; Duelli A; Lyu P; Bågenholm V; Eriksson J; Rao KU; Henderson DI; Meloni G; Andersson M; Croll T; Godaly G; Wang K; Gourdon P
    Elife; 2021 Dec; 10():. PubMed ID: 34951590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and mechanism of Zn2+-transporting P-type ATPases.
    Wang K; Sitsel O; Meloni G; Autzen HE; Andersson M; Klymchuk T; Nielsen AM; Rees DC; Nissen P; Gourdon P
    Nature; 2014 Oct; 514(7523):518-22. PubMed ID: 25132545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and mutagenesis of ZntA, a zinc-transporting P-type ATPase from Escherichia coli.
    Okkeri J; Haltia T
    Biochemistry; 1999 Oct; 38(42):14109-16. PubMed ID: 10529259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the activity of a recombinant Zn
    Ravishankar H; Barth A; Andersson M
    Biopolymers; 2018 Feb; 109(2):. PubMed ID: 29168553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional insights of Wilson disease copper-transporting ATPase.
    Fatemi N; Sarkar B
    J Bioenerg Biomembr; 2002 Oct; 34(5):339-49. PubMed ID: 12539961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing Wilson disease mutations into the zinc-transporting P-type ATPase of Escherichia coli. The mutation P634L in the 'hinge' motif (GDGXNDXP) perturbs the formation of the E2P state.
    Okkeri J; Bencomo E; Pietilä M; Haltia T
    Eur J Biochem; 2002 Mar; 269(5):1579-86. PubMed ID: 11874474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of ZntA, a zinc-transporting P1-type ATPase, is specifically regulated by zinc and cadmium.
    Noll M; Lutsenko S
    IUBMB Life; 2000 Apr; 49(4):297-302. PubMed ID: 10995032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function.
    Mitra B; Sharma R
    Biochemistry; 2001 Jun; 40(25):7694-9. PubMed ID: 11412123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metal-binding sites of the zinc-transporting P-type ATPase of Escherichia coli. Lys693 and Asp714 in the seventh and eighth transmembrane segments of ZntA contribute to the coupling of metal binding and ATPase activity.
    Okkeri J; Haltia T
    Biochim Biophys Acta; 2006 Nov; 1757(11):1485-95. PubMed ID: 16890908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP.
    Okkeri J; Laakkonen L; Haltia T
    Biochem J; 2004 Jan; 377(Pt 1):95-105. PubMed ID: 14510639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.
    Laurent C; Lekeux G; Ukuwela AA; Xiao Z; Charlier JB; Bosman B; Carnol M; Motte P; Damblon C; Galleni M; Hanikenne M
    Plant Mol Biol; 2016 Mar; 90(4-5):453-66. PubMed ID: 26797794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new zinc-protein coordination site in intracellular metal trafficking: solution structure of the Apo and Zn(II) forms of ZntA(46-118).
    Banci L; Bertini I; Ciofi-Baffoni S; Finney LA; Outten CE; O'Halloran TV
    J Mol Biol; 2002 Nov; 323(5):883-97. PubMed ID: 12417201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid requirement and pH optimum for the in vitro enzymatic activity of the E. coli P-type ATPase ZntA.
    Zimmer J; Doyle DA
    Biochim Biophys Acta; 2006 May; 1758(5):645-52. PubMed ID: 16730648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue.
    Dutta SJ; Liu J; Hou Z; Mitra B
    Biochemistry; 2006 May; 45(18):5923-31. PubMed ID: 16669635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On allosteric modulation of P-type Cu(+)-ATPases.
    Mattle D; Sitsel O; Autzen HE; Meloni G; Gourdon P; Nissen P
    J Mol Biol; 2013 Jul; 425(13):2299-308. PubMed ID: 23500486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass.
    Mills RF; Krijger GC; Baccarini PJ; Hall JL; Williams LE
    Plant J; 2003 Jul; 35(2):164-76. PubMed ID: 12848823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of copper transport in Wilson disease.
    Fatemi N; Sarkar B
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):695-8. PubMed ID: 12426114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and Function of Cu(I)- and Zn(II)-ATPases.
    Sitsel O; Grønberg C; Autzen HE; Wang K; Meloni G; Nissen P; Gourdon P
    Biochemistry; 2015 Sep; 54(37):5673-83. PubMed ID: 26132333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological characterization of 45Ca2+ and 65Zn2+ transport by lobster hepatopancreatic endoplasmic reticulum.
    Mandal PK; Mandal A; Ahearn GA
    J Exp Zool A Comp Exp Biol; 2005 Jul; 303(7):515-26. PubMed ID: 15945071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.