These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31545095)
1. Logistic Regression Method for Ligand Discovery. Chen C; Wang H J Comput Biol; 2020 Jun; 27(6):934-940. PubMed ID: 31545095 [TBL] [Abstract][Full Text] [Related]
2. Protein-specific scoring method for ligand discovery. Lu IL; Wang H J Comput Biol; 2012 Nov; 19(11):1215-26. PubMed ID: 23075003 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges. Huang SY Brief Bioinform; 2018 Sep; 19(5):982-994. PubMed ID: 28334282 [TBL] [Abstract][Full Text] [Related]
4. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking. Uehara S; Tanaka S Molecules; 2016 Nov; 21(11):. PubMed ID: 27886114 [TBL] [Abstract][Full Text] [Related]
5. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114 [TBL] [Abstract][Full Text] [Related]
6. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions. Kumar SP J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118 [TBL] [Abstract][Full Text] [Related]
7. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing. Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116 [TBL] [Abstract][Full Text] [Related]
8. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment. Zhang X; Wong SE; Lightstone FC J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Protein-Ligand Docking by Cyscore. Cao Y; Dai W; Miao Z Methods Mol Biol; 2018; 1762():233-243. PubMed ID: 29594775 [TBL] [Abstract][Full Text] [Related]
17. Supervised consensus scoring for docking and virtual screening. Teramoto R; Fukunishi H J Chem Inf Model; 2007; 47(2):526-34. PubMed ID: 17295466 [TBL] [Abstract][Full Text] [Related]
18. Protein-protein docking with binding site patch prediction and network-based terms enhanced combinatorial scoring. Gong X; Wang P; Yang F; Chang S; Liu B; He H; Cao L; Xu X; Li C; Chen W; Wang C Proteins; 2010 Nov; 78(15):3150-5. PubMed ID: 20806233 [TBL] [Abstract][Full Text] [Related]
19. Improving structure-based virtual screening performance via learning from scoring function components. Xiong GL; Ye WL; Shen C; Lu AP; Hou TJ; Cao DS Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32496540 [TBL] [Abstract][Full Text] [Related]
20. Prediction of ligand binding using an approach designed to accommodate diversity in protein-ligand interactions. Marsh L PLoS One; 2011; 6(8):e23215. PubMed ID: 21860668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]