These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31545095)

  • 1. Logistic Regression Method for Ligand Discovery.
    Chen C; Wang H
    J Comput Biol; 2020 Jun; 27(6):934-940. PubMed ID: 31545095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-specific scoring method for ligand discovery.
    Lu IL; Wang H
    J Comput Biol; 2012 Nov; 19(11):1215-26. PubMed ID: 23075003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges.
    Huang SY
    Brief Bioinform; 2018 Sep; 19(5):982-994. PubMed ID: 28334282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
    Uehara S; Tanaka S
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions.
    Kumar SP
    J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing.
    Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L
    PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Protein-Ligand Docking by Cyscore.
    Cao Y; Dai W; Miao Z
    Methods Mol Biol; 2018; 1762():233-243. PubMed ID: 29594775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRDOCK: an ultrafast multipurpose protein-ligand docking tool.
    Cortés Cabrera Á; Klett J; Dos Santos HG; Perona A; Gil-Redondo R; Francis SM; Priego EM; Gago F; Morreale A
    J Chem Inf Model; 2012 Aug; 52(8):2300-9. PubMed ID: 22764680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics as a Tool for Virtual Ligand Screening.
    Menchon G; Maveyraud L; Czaplicki G
    Methods Mol Biol; 2018; 1762():145-178. PubMed ID: 29594772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cosolvent-Based Protein Pharmacophore for Ligand Enrichment in Virtual Screening.
    Arcon JP; Defelipe LA; Lopez ED; Burastero O; Modenutti CP; Barril X; Marti MA; Turjanski AG
    J Chem Inf Model; 2019 Aug; 59(8):3572-3583. PubMed ID: 31373819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical assessment of docking programs and scoring functions.
    Warren GL; Andrews CW; Capelli AM; Clarke B; LaLonde J; Lambert MH; Lindvall M; Nevins N; Semus SF; Senger S; Tedesco G; Wall ID; Woolven JM; Peishoff CE; Head MS
    J Med Chem; 2006 Oct; 49(20):5912-31. PubMed ID: 17004707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Scoring Based Distributed Protein Docking Application to Improve Enrichment.
    Pradeep P; Struble C; Neumann T; Sem DS; Merrill SJ
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1464-9. PubMed ID: 26671816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normalizing molecular docking rankings using virtually generated decoys.
    Wallach I; Jaitly N; Nguyen K; Schapira M; Lilien R
    J Chem Inf Model; 2011 Aug; 51(8):1817-30. PubMed ID: 21699246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised consensus scoring for docking and virtual screening.
    Teramoto R; Fukunishi H
    J Chem Inf Model; 2007; 47(2):526-34. PubMed ID: 17295466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-protein docking with binding site patch prediction and network-based terms enhanced combinatorial scoring.
    Gong X; Wang P; Yang F; Chang S; Liu B; He H; Cao L; Xu X; Li C; Chen W; Wang C
    Proteins; 2010 Nov; 78(15):3150-5. PubMed ID: 20806233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving structure-based virtual screening performance via learning from scoring function components.
    Xiong GL; Ye WL; Shen C; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32496540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.