These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31545184)

  • 1. Surface evolution of synthetic bilgewater emulsion.
    Son J; Shen Y; Yao J; Paynter D; Yu XY
    Chemosphere; 2019 Dec; 236():124345. PubMed ID: 31545184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting bilgewater emulsion stability by oil separation using image processing and machine learning.
    Lee WH; Park CY; Diaz D; Rodriguez KL; Chung J; Church J; Willner MR; Lundin JG; Paynter DM
    Water Res; 2022 Sep; 223():118977. PubMed ID: 35988334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of bilgewater emulsions.
    Church J; Lundin JG; Diaz D; Mercado D; Willner MR; Lee WH; Paynter DM
    Sci Total Environ; 2019 Nov; 691():981-995. PubMed ID: 31326820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid ToF-SIMS revealing the oil, water, and surfactant interface evolution.
    Shen Y; Yao J; Son J; Zhu Z; Yu XY
    Phys Chem Chem Phys; 2020 Jun; 22(21):11771-11782. PubMed ID: 32227050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size dependent droplet interfacial tension and surfactant transport in liquid-liquid systems, with applications in shipboard oily bilgewater emulsions.
    Chen Y; Dutcher CS
    Soft Matter; 2020 Mar; 16(12):2994-3004. PubMed ID: 32125335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.
    Worthen AJ; Foster LM; Dong J; Bollinger JA; Peterman AH; Pastora LE; Bryant SL; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Feb; 30(4):984-94. PubMed ID: 24409832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion and mixing dynamics of complex oil-in-water emulsions in Taylor-Couette flows.
    Panwar V; Vargas CN; Dutcher CS
    Philos Trans A Math Phys Eng Sci; 2023 May; 381(2246):20220128. PubMed ID: 36907205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing shipboard bilgewater effluent before and after treatment.
    McLaughlin C; Falatko D; Danesi R; Albert R
    Environ Sci Pollut Res Int; 2014 Apr; 21(8):5637-52. PubMed ID: 24420560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrocarbon removal from bilgewater by a combination of air-stripping and photocatalysis.
    Cazoir D; Fine L; Ferronato C; Chovelon JM
    J Hazard Mater; 2012 Oct; 235-236():159-68. PubMed ID: 22871416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic characterization of oil-in-water emulsions for formulation design.
    Roland I; Piel G; Delattre L; Evrard B
    Int J Pharm; 2003 Sep; 263(1-2):85-94. PubMed ID: 12954183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle size distributions and particle size alterations in microemulsions.
    Müller BW; Müller RH
    J Pharm Sci; 1984 Jul; 73(7):919-22. PubMed ID: 6470953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 'Emulsion locks' for the containment of hydrocarbons during surfactant flushing.
    Lamont K; Marangoni AG; Pensini E
    J Environ Sci (China); 2020 Apr; 90():98-109. PubMed ID: 32081345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure.
    Zúñiga RN; Skurtys O; Osorio F; Aguilera JM; Pedreschi F
    Carbohydr Polym; 2012 Oct; 90(2):1147-58. PubMed ID: 22840052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation.
    Rincón GJ; La Motta EJ
    J Environ Manage; 2014 Nov; 144():42-50. PubMed ID: 24908614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of isothermal low-energy nanoemulsion formation: hydrocarbon oil, non-ionic surfactant, and water systems.
    Komaiko J; McClements DJ
    J Colloid Interface Sci; 2014 Jul; 425():59-66. PubMed ID: 24776664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of fluorocarbon-in-water emulsions with added triglyceride.
    Weers JG; Arlauskas RA; Tarara TE; Pelura TJ
    Langmuir; 2004 Aug; 20(18):7430-5. PubMed ID: 15323486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the emulsion components and preparation method on the laboratory-scale preparation of o/w emulsions containing different types of dispersed phases and/or emulsifiers.
    Einhorn-Stoll U; Weiss M; Kunzek H
    Nahrung; 2002 Aug; 46(4):294-301. PubMed ID: 12224428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphiphilic polysaccharides: useful tools for the preparation of nanoparticles with controlled surface characteristics.
    Durand A; Marie E; Rotureau E; Leonard M; Dellacherie E
    Langmuir; 2004 Aug; 20(16):6956-63. PubMed ID: 15274610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion.
    Ostertag F; Weiss J; McClements DJ
    J Colloid Interface Sci; 2012 Dec; 388(1):95-102. PubMed ID: 22981587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing organoclay stabilized Pickering emulsions.
    Cui Y; Threlfall M; van Duijneveldt JS
    J Colloid Interface Sci; 2011 Apr; 356(2):665-71. PubMed ID: 21324469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.