These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31545190)

  • 21. Assessing main process mechanism and rates of sulfate reduction by granular biomass fed with glycerol under sulfidogenic conditions.
    Zhou X; Fernández-Palacios E; Dorado AD; Gamisans X; Gabriel D
    Chemosphere; 2022 Jan; 286(Pt 1):131649. PubMed ID: 34325258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN
    J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic removal in a sulfidogenic fixed-bed column bioreactor.
    Altun M; Sahinkaya E; Durukan I; Bektas S; Komnitsas K
    J Hazard Mater; 2014 Mar; 269():31-7. PubMed ID: 24360509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and 65 degrees C temperatures is limited by acetate oxidation.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Water Res; 2007 Jun; 41(12):2706-14. PubMed ID: 17418880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification.
    Janssen AJ; Lens PN; Stams AJ; Plugge CM; Sorokin DY; Muyzer G; Dijkman H; Van Zessen E; Luimes P; Buisman CJ
    Sci Total Environ; 2009 Feb; 407(4):1333-43. PubMed ID: 19027933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.
    Sahinkaya E
    J Hazard Mater; 2009 May; 164(1):105-13. PubMed ID: 18774640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies.
    van Lier JB; Lens PN; Pol LW
    Water Sci Technol; 2001; 44(4):189-95. PubMed ID: 11575084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel biological sulfur reduction process for mercury-contaminated wastewater treatment.
    Wang J; Hong Y; Lin Z; Zhu C; Da J; Chen G; Jiang F
    Water Res; 2019 Sep; 160():288-295. PubMed ID: 31154126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological sulfide removal under alkaline and aerobic conditions in a packed recycling reactor.
    González-Sánchez A; Revah S
    Water Sci Technol; 2009; 59(7):1415-21. PubMed ID: 19381008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of biochemical sulfide potential (BSP) test for sulfidogenic biotechnology application.
    Chen L; Tsui TH; Ekama GA; Mackey HR; Hao T; Chen G
    Water Res; 2018 May; 135():231-240. PubMed ID: 29477061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of produced elementary sulfur in denitrifying sulfide removal process.
    Zhou X; Liu L; Chen C; Ren N; Wang A; Lee DJ
    Appl Microbiol Biotechnol; 2011 May; 90(3):1129-36. PubMed ID: 21286712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Treatment and remediation of metal-contaminated water and groundwater in mining areas by biological sulfidogenic processes: A review.
    Li Y; Zhao Q; Liu M; Guo J; Xia J; Wang J; Qiu Y; Zou J; He W; Jiang F
    J Hazard Mater; 2023 Feb; 443(Pt B):130377. PubMed ID: 36444068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of sulfite and internal recirculation on organic compound removal and the microbial community structure of a sulfur cycle-driven biological wastewater treatment process.
    Qian J; Zhang M; Niu J; Fu X; Pei X; Chang X; Wei L; Liu R; Chen GH; Jiang F
    Chemosphere; 2019 Jul; 226():825-833. PubMed ID: 30974375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New developments in reactor and process technology for sulfate reduction.
    Pol LW; Lens PN; Weijma J; Stams AJ
    Water Sci Technol; 2001; 44(8):67-76. PubMed ID: 11730138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition.
    Chang IS; Kim BH
    Chemosphere; 2007 Jun; 68(2):218-26. PubMed ID: 17337035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogenotrophic sulfate reduction in a gas-lift bioreactor operated at 9 degrees C.
    Nevatalo LM; Bijmans MF; Lens PN; Kaksonen AH; Puhakka JA
    J Microbiol Biotechnol; 2010 Mar; 20(3):615-21. PubMed ID: 20372036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance of a sulfide-oxidizing, sulfur-producing membrane biofilm reactor treating sulfide-containing bioreactor effluent.
    Sahinkaya E; Hasar H; Kaksonen AH; Rittmann BE
    Environ Sci Technol; 2011 May; 45(9):4080-7. PubMed ID: 21452867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.