BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31545202)

  • 1. Water-soluble mercury induced by organic amendments affected microbial community assemblage in mercury-polluted paddy soil.
    Hu H; Li M; Wang G; Drosos M; Li Z; Hu Z; Xi B
    Chemosphere; 2019 Dec; 236():124405. PubMed ID: 31545202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic amendments affect dissolved organic matter composition and mercury dissolution in pore waters of mercury-polluted paddy soil.
    Li M; Drosos M; Hu H; He X; Wang G; Zhang H; Hu Z; Xi B
    Chemosphere; 2019 Oct; 232():356-365. PubMed ID: 31158630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic and inorganic amendment application on mercury-polluted soils: effects on soil chemical and biochemical properties.
    García-Sánchez M; Klouza M; Holečková Z; Tlustoš P; Száková J
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14254-68. PubMed ID: 27053055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in clover rhizosphere microbial community and diazotrophs in mercury-contaminated soils.
    Zhu H; Teng Y; Wang X; Zhao L; Ren W; Luo Y; Christie P
    Sci Total Environ; 2021 May; 767():145473. PubMed ID: 33636759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China.
    Liu YR; Delgado-Baquerizo M; Bi L; Zhu J; He JZ
    Microbiome; 2018 Oct; 6(1):183. PubMed ID: 30336790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response mechanism of microbial community to the environmental stress caused by the different mercury concentration in soils.
    Wang L; Wang LA; Zhan X; Huang Y; Wang J; Wang X
    Ecotoxicol Environ Saf; 2020 Jan; 188():109906. PubMed ID: 31708226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in soil microbial community functionality and structure in a metal-polluted site: The effect of digestate and fly ash applications.
    Garcia-Sánchez M; Garcia-Romera I; Cajthaml T; Tlustoš P; Száková J
    J Environ Manage; 2015 Oct; 162():63-73. PubMed ID: 26225934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment.
    Tang Z; Fan F; Wang X; Shi X; Deng S; Wang D
    Ecotoxicol Environ Saf; 2018 Apr; 150():116-122. PubMed ID: 29272715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hg bioavailability and impact on bacterial communities in a long-term polluted soil.
    Ruggiero P; Terzano R; Spagnuolo M; Cavalca L; Colombo M; Andreoni V; Rao MA; Perucci P; Monaci E
    J Environ Monit; 2011 Jan; 13(1):145-56. PubMed ID: 21060931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of microbial communities potentially involved in mercury methylation in rice paddies surrounding typical mercury mining areas in China.
    Liu X; Ma A; Zhuang G; Zhuang X
    Microbiologyopen; 2018 Aug; 7(4):e00577. PubMed ID: 29527815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors.
    Osterwalder S; Huang JH; Shetaya WH; Agnan Y; Frossard A; Frey B; Alewell C; Kretzschmar R; Biester H; Obrist D
    Environ Pollut; 2019 Jul; 250():944-952. PubMed ID: 31085481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain.
    Ji H; Zhang Y; Bararunyeretse P; Li H
    Ecotoxicol Environ Saf; 2018 Dec; 165():182-193. PubMed ID: 30196000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labile carbon inputs boost microbial contribution to legacy mercury reduction and emissions from industry-polluted soils.
    Hao X; Zhao Q; Zhou X; Huang Q; Liu YR
    J Hazard Mater; 2024 Mar; 465():133122. PubMed ID: 38056276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil aggregate-associated mercury (Hg) and organic carbon distribution and microbial community characteristics under typical farmland-use types.
    Pei P; Sun T; Xu Y; Sun Y
    Chemosphere; 2021 Jul; 275():129987. PubMed ID: 33631401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury speciation and effects on soil microbial activities.
    Tazisong IA; Senwo ZN; Williams MI
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):854-62. PubMed ID: 22423992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of long-term fertilization on the diversity of bacterial mercuric reductase gene in a Chinese upland soil.
    Liu YR; He JZ; Zhang LM; Zheng YM
    J Basic Microbiol; 2012 Feb; 52(1):35-42. PubMed ID: 22052505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of bacterial taxonomic attributes to mercury species in rhizosphere paddy soil under natural sulphur-rich biochar amendment.
    Hu H; Li Z; Xi B; Xu Q; Tan W
    Ecotoxicol Environ Saf; 2022 Jan; 229():113058. PubMed ID: 34890984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-Term Legacy Effects of Mercury Contamination on Plant Growth and nifH-Harboring Microbial Community in Rice Paddy Soil.
    Hyun HR; Yoon H; Lyou ES; Kim JJ; Kwon SY; Lee TK
    Microb Ecol; 2021 Nov; 82(4):932-941. PubMed ID: 33624137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of archaea and bacteria in rice rhizosphere along a mercury gradient.
    Ma M; Du H; Sun T; An S; Yang G; Wang D
    Sci Total Environ; 2019 Feb; 650(Pt 1):1640-1651. PubMed ID: 30054090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields.
    Singh JS; Pandey VC
    Ecotoxicol Environ Saf; 2013 Mar; 89():43-51. PubMed ID: 23260239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.