These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 31545397)
1. Screening and identification of biomarkers for systemic sclerosis via microarray technology. Xu C; Meng LB; Duan YC; Cheng YJ; Zhang CM; Zhou X; Huang CB Int J Mol Med; 2019 Nov; 44(5):1753-1770. PubMed ID: 31545397 [TBL] [Abstract][Full Text] [Related]
2. Integrated microarray analysis to identify potential biomarkers and therapeutic targets in dilated cardiomyopathy. Zhang H; Huo J; Jiang W; Shan Q Mol Med Rep; 2020 Aug; 22(2):915-925. PubMed ID: 32626989 [TBL] [Abstract][Full Text] [Related]
3. Differentially expressed genes between systemic sclerosis and rheumatoid arthritis. Sun Z; Wang W; Yu D; Mao Y Hereditas; 2019; 156():17. PubMed ID: 31178673 [TBL] [Abstract][Full Text] [Related]
4. Bioinformatics-integrated screening of systemic sclerosis-specific expressed markers to identify therapeutic targets. Jin J; Liu Y; Tang Q; Yan X; Jiang M; Zhao X; Chen J; Jin C; Ou Q; Zhao J Front Immunol; 2023; 14():1125183. PubMed ID: 37063926 [TBL] [Abstract][Full Text] [Related]
5. Identification and Interaction Analysis of Key Genes and MicroRNAs in Systemic Sclerosis by Bioinformatics Approaches. Sun YH; Xie M; Wu SD; Zhang J; Huang CZ Curr Med Sci; 2019 Aug; 39(4):645-652. PubMed ID: 31347003 [TBL] [Abstract][Full Text] [Related]
6. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma. Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538 [TBL] [Abstract][Full Text] [Related]
7. Identification of key pathogenic genes of sepsis based on the Gene Expression Omnibus database. Lu X; Xue L; Sun W; Ye J; Zhu Z; Mei H Mol Med Rep; 2018 Feb; 17(2):3042-3054. PubMed ID: 29257295 [TBL] [Abstract][Full Text] [Related]
8. An integrative bioinformatics analysis of microarray data for identifying hub genes as diagnostic biomarkers of preeclampsia. Liu K; Fu Q; Liu Y; Wang C Biosci Rep; 2019 Sep; 39(9):. PubMed ID: 31416885 [TBL] [Abstract][Full Text] [Related]
9. Identification for Exploring Underlying Pathogenesis and Therapy Strategy of Oral Squamous Cell Carcinoma by Bioinformatics Analysis. Xu Z; Jiang P; He S Med Sci Monit; 2019 Dec; 25():9216-9226. PubMed ID: 31794546 [TBL] [Abstract][Full Text] [Related]
10. Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms. Guo T; Hou D; Yu D Mol Med Rep; 2019 Nov; 20(5):4415-4424. PubMed ID: 31545495 [TBL] [Abstract][Full Text] [Related]
11. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250 [TBL] [Abstract][Full Text] [Related]
12. Identification of Key Biomarkers and Potential Molecular Mechanisms in Renal Cell Carcinoma by Bioinformatics Analysis. Li F; Guo P; Dong K; Guo P; Wang H; Lv X J Comput Biol; 2019 Nov; 26(11):1278-1295. PubMed ID: 31233342 [No Abstract] [Full Text] [Related]
13. Bioinformatics analysis of fibroblasts exposed to TGF‑β at the early proliferation phase of wound repair. Mi B; Liu G; Zhou W; Lv H; Zha K; Liu Y; Wu Q; Liu J Mol Med Rep; 2017 Dec; 16(6):8146-8154. PubMed ID: 28983581 [TBL] [Abstract][Full Text] [Related]
14. Identification of hub genes in chronically hypoxic myocardium using bioinformatics analysis. Wu F; Gao F; He S; Xiao Y Mol Med Rep; 2019 May; 19(5):3871-3881. PubMed ID: 30864710 [TBL] [Abstract][Full Text] [Related]
15. Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis. Yu C; Chen F; Jiang J; Zhang H; Zhou M Mol Med Rep; 2019 Aug; 20(2):1259-1269. PubMed ID: 31173250 [TBL] [Abstract][Full Text] [Related]
16. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618 [TBL] [Abstract][Full Text] [Related]
17. Identification of Biomarkers Related to Systemic Sclerosis With or Without Pulmonary Hypertension Using Co-expression Analysis. Tang Y; Zha L; Zeng X; Yu Z J Comput Biol; 2020 Oct; 27(10):1519-1531. PubMed ID: 32298610 [TBL] [Abstract][Full Text] [Related]
18. Identification of key genes and pathways in pelvic organ prolapse based on gene expression profiling by bioinformatics analysis. Zhou Q; Hong L; Wang J Arch Gynecol Obstet; 2018 May; 297(5):1323-1332. PubMed ID: 29546564 [TBL] [Abstract][Full Text] [Related]
19. Identification of Differentially Expressed Genes Associated with Idiopathic Pulmonary Arterial Hypertension by Integrated Bioinformatics Approaches. Zhao E; Xie H; Zhang Y J Comput Biol; 2021 Jan; 28(1):79-88. PubMed ID: 32493063 [TBL] [Abstract][Full Text] [Related]
20. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments. Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]