BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31545599)

  • 1. Understanding toward the Biophysical Interaction of Polymeric Proanthocyanidins (Persimmon Condensed Tannins) with Biomembranes: Relevance for Biological Effects.
    Zhu W; Wang RF; Khalifa I; Li CM
    J Agric Food Chem; 2019 Oct; 67(40):11044-11052. PubMed ID: 31545599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between highly galloylated persimmon tannins and pectins.
    Mamet T; Ge ZZ; Zhang Y; Li CM
    Int J Biol Macromol; 2018 Jan; 106():410-417. PubMed ID: 28797812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity and potential mechanisms of action of persimmon tannins according to their structures: A review.
    Wang R; Shi X; Li K; Bunker A; Li C
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):125120. PubMed ID: 37263329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Insights on the Biophysical Interaction of Resveratrol with Biomembrane Models: Relevance for Its Biological Effects.
    Neves AR; Nunes C; Reis S
    J Phys Chem B; 2015 Sep; 119(35):11664-72. PubMed ID: 26237152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes.
    Varela AR; Ventura AE; Carreira AC; Fedorov A; Futerman AH; Prieto M; Silva LC
    Phys Chem Chem Phys; 2016 Dec; 19(1):340-346. PubMed ID: 27905603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory Effect of Persimmon Tannin on Pancreatic Lipase and the Underlying Mechanism in Vitro.
    Zhu W; Jia Y; Peng J; Li CM
    J Agric Food Chem; 2018 Jun; 66(24):6013-6021. PubMed ID: 29806464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-insoluble condensed tannins content of young persimmon fruits-derived crude fibre relates to its bile acid-binding ability.
    Takekawa K; Matsumoto K
    Nat Prod Res; 2012; 26(23):2255-8. PubMed ID: 22250751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of peel and pulp proanthocyanidins and carotenoids during ripening in persimmon "Kaki Tipo" cv, cultivated in Italy.
    Bordiga M; Travaglia F; Giuffrida D; Mangraviti D; Rigano F; Mondello L; Arlorio M; Coïsson JD
    Food Res Int; 2019 Jun; 120():800-809. PubMed ID: 31000300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta.
    Brillouet JM; Romieu C; Schoefs B; Solymosi K; Cheynier V; Fulcrand H; Verdeil JL; Conéjéro G
    Ann Bot; 2013 Oct; 112(6):1003-14. PubMed ID: 24026439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of Native Proanthocyanidins from Grapevine (Vitis vinifera) and Other Fruits in Aqueous Buffer.
    Brillouet JM; Fulcrand H; Carrillo S; Rouméas L; Romieu C
    J Agric Food Chem; 2017 Apr; 65(13):2895-2901. PubMed ID: 28291348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major water-soluble polyphenols, proanthocyanidins, in leaves of persimmon (Diospyros kaki) and their alpha-amylase inhibitory activity.
    Kawakami K; Aketa S; Nakanami M; Iizuka S; Hirayama M
    Biosci Biotechnol Biochem; 2010; 74(7):1380-5. PubMed ID: 20622463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of A-type proanthocyanidin dimers from peanut skins and persimmon pulp and comparison of the antioxidant activity of A-type and B-type dimers.
    Dong XQ; Zou B; Zhang Y; Ge ZZ; Du J; Li CM
    Fitoterapia; 2013 Dec; 91():128-139. PubMed ID: 24001713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High molecular weight persimmon (Diospyros kaki L.) proanthocyanidin: a highly galloylated, A-linked tannin with an unusual flavonol terminal unit, myricetin.
    Li C; Leverence R; Trombley JD; Xu S; Yang J; Tian Y; Reed JD; Hagerman AE
    J Agric Food Chem; 2010 Aug; 58(16):9033-42. PubMed ID: 23654234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins.
    Tsamaloukas A; Szadkowska H; Heerklotz H
    Biophys J; 2006 Jun; 90(12):4479-87. PubMed ID: 16581844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Young persimmon ingestion suppresses lipid oxidation in rats.
    Fushimi S; Myazawa F; Nakagawa K; Burdeos GC; Miyazawa T
    J Nutr Sci Vitaminol (Tokyo); 2015; 61(1):90-5. PubMed ID: 25994144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of tea tannins and condensed tannins with proteins.
    Frazier RA; Deaville ER; Green RJ; Stringano E; Willoughby I; Plant J; Mueller-Harvey I
    J Pharm Biomed Anal; 2010 Jan; 51(2):490-5. PubMed ID: 19553056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature and composition dependence of the interaction of delta-lysin with ternary mixtures of sphingomyelin/cholesterol/POPC.
    Pokorny A; Yandek LE; Elegbede AI; Hinderliter A; Almeida PF
    Biophys J; 2006 Sep; 91(6):2184-97. PubMed ID: 16798807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory activities of proanthocyanidins from persimmon against oxidative stress and digestive enzymes related to diabetes.
    Lee YA; Cho EJ; Tanaka T; Yokozawa T
    J Nutr Sci Vitaminol (Tokyo); 2007 Jun; 53(3):287-92. PubMed ID: 17874835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a laccase gene potentially involved in proanthocyanidin polymerization in Oriental persimmon (Diospyros kaki Thunb.) fruit.
    Hu Q; Luo C; Zhang Q; Luo Z
    Mol Biol Rep; 2013 Apr; 40(4):2809-20. PubMed ID: 23224657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and (2)H NMR Spectra.
    Yasuda T; Matsumori N; Tsuchikawa H; Lönnfors M; Nyholm TK; Slotte JP; Murata M
    Langmuir; 2015 Dec; 31(51):13783-92. PubMed ID: 26639840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.