BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 31545611)

  • 1. Plasmonic Microneedle Arrays for in Situ Sensing with Surface-Enhanced Raman Spectroscopy (SERS).
    Park JE; Yonet-Tanyeri N; Vander Ende E; Henry AI; Perez White BE; Mrksich M; Van Duyne RP
    Nano Lett; 2019 Oct; 19(10):6862-6868. PubMed ID: 31545611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Exploration of Cysteamine as a Subphase Additive for the Fabrication of Uniform Gold Nanorod Arrays using Langmuir-Blodgett Deposition.
    Albarghouthi N; Chotoye S; Brosseau CL
    Chemphyschem; 2024 May; ():e202400146. PubMed ID: 38712929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Interstitial Fluid Extraction and Rapid Analysis via Vacuum Tube-Integrated Microneedle Array Device.
    Xie Y; He J; He W; Iftikhar T; Zhang C; Su L; Zhang X
    Adv Sci (Weinh); 2024 Mar; ():e2308716. PubMed ID: 38502884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endoscopic sensing of alveolar pH.
    Choudhury D; Tanner MG; McAughtrie S; Yu F; Mills B; Choudhary TR; Seth S; Craven TH; Stone JM; Mati IK; Campbell CJ; Bradley M; Williams CK; Dhaliwal K; Birks TA; Thomson RR
    Biomed Opt Express; 2017 Jan; 8(1):243-259. PubMed ID: 28101415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering vascularized skin-mimetic phantom for non-invasive Raman spectroscopy.
    Raj P; Wu L; Arora S; Bhatt R; Zuo Y; Fang Z; Verdoold R; Koch T; Gu L; Barman I
    Sens Actuators B Chem; 2024 Apr; 404():. PubMed ID: 38524639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling interstitial fluid from human skin using a microneedle patch.
    Samant PP; Niedzwiecki MM; Raviele N; Tran V; Mena-Lapaix J; Walker DI; Felner EI; Jones DP; Miller GW; Prausnitz MR
    Sci Transl Med; 2020 Nov; 12(571):. PubMed ID: 33239384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid.
    Zhu J; Zhou X; Kim HJ; Qu M; Jiang X; Lee K; Ren L; Wu Q; Wang C; Zhu X; Tebon P; Zhang S; Lee J; Ashammakhi N; Ahadian S; Dokmeci MR; Gu Z; Sun W; Khademhosseini A
    Small; 2020 Apr; 16(16):e1905910. PubMed ID: 32101371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microneedle Sensors for Point-of-Care Diagnostics.
    Hu Y; Chatzilakou E; Pan Z; Traverso G; Yetisen AK
    Adv Sci (Weinh); 2024 Mar; 11(12):e2306560. PubMed ID: 38225744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman scattering sensing for detection and mapping of key cellular biomarkers.
    Yang Y; Wu S; Chen Y; Ju H
    Chem Sci; 2023 Nov; 14(45):12869-12882. PubMed ID: 38023499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies.
    Darvin ME
    Pharmaceutics; 2023 Sep; 15(9):. PubMed ID: 37765241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Detection of Cyanide Raman Tag pH-Responsive SERS Probes.
    Shen J; Liu G; Zhang W; Shi W; Zhou Y; Yu Z; Mei Q; Zhang L; Huang W
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is Raman the best strategy towards the development of non-invasive continuous glucose monitoring devices for diabetes management?
    Todaro B; Begarani F; Sartori F; Luin S
    Front Chem; 2022; 10():994272. PubMed ID: 36226124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface potential modulation as a tool for mitigating challenges in SERS-based microneedle sensors.
    Brasiliense V; Park JE; Berns EJ; Van Duyne RP; Mrksich M
    Sci Rep; 2022 Sep; 12(1):15929. PubMed ID: 36151248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microneedle-based bioassays.
    Zhu J; Zhou X; Libanori A; Sun W
    Nanoscale Adv; 2020 Oct; 2(10):4295-4304. PubMed ID: 36132929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microneedle-Based Glucose Sensor Platform: From
    Ju J; Li L; Regmi S; Zhang X; Tang S
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-Printed Microneedles for Point-of-Care Biosensing Applications.
    Rezapour Sarabi M; Nakhjavani SA; Tasoglu S
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microneedle-Based Device for Biological Analysis.
    Lu H; Zada S; Yang L; Dong H
    Front Bioeng Biotechnol; 2022; 10():851134. PubMed ID: 35528208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine.
    Plou J; Valera PS; García I; de Albuquerque CDL; Carracedo A; Liz-Marzán LM
    ACS Photonics; 2022 Feb; 9(2):333-350. PubMed ID: 35211644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong Visible Light Absorption and Abundant Hotspots in Au-Decorated WO
    Zou JW; Li ZD; Kang HS; Zhao WQ; Liu JC; Chen YL; Ma L; Hou HY; Ding SJ
    ACS Omega; 2021 Oct; 6(42):28347-28355. PubMed ID: 34723031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases.
    Erdem Ö; Eş I; Akceoglu GA; Saylan Y; Inci F
    Biosensors (Basel); 2021 Aug; 11(9):. PubMed ID: 34562886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.