These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31545733)

  • 1. Detection of the Intention to Grasp During Reaching in Stroke Using Inertial Sensing.
    van Ommeren AL; Sawaryn B; Prange-Lasonder GB; Buurke JH; Rietman JS; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2128-2134. PubMed ID: 31545733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of the intention to grasp during reach movements.
    de Vries JC; van Ommeren AL; Prange-Lasonder GP; Rietman JS; Veltink PH
    J Rehabil Assist Technol Eng; 2018; 5():2055668317752850. PubMed ID: 31191924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-EMG hybrid real-time classification of hand grasp and release movements intention in chronic stroke patients.
    Jo S; Jung JH; Yang MJ; Lee Y; Jang SJ; Feng J; Heo SH; Kim J; Shin JH; Jeong J; Park HS
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hand Extension Robot Orthosis (HERO) Glove: Development and Testing With Stroke Survivors With Severe Hand Impairment.
    Yurkewich A; Hebert D; Wang RH; Mihailidis A
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):916-926. PubMed ID: 30990185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of grasp versus reach in people with hemiparesis poststroke.
    Lang CE; Wagner JM; Edwards DF; Sahrmann SA; Dromerick AW
    Neurorehabil Neural Repair; 2006 Dec; 20(4):444-54. PubMed ID: 17082499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke.
    Meeker C; Park S; Bishop L; Stein J; Ciocarlie M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1203-1210. PubMed ID: 28813985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and validation of low-cost assistive glove for hand assessment and therapy during activity of daily living-focused robotic stroke therapy.
    Nathan DE; Johnson MJ; McGuire JR
    J Rehabil Res Dev; 2009; 46(5):587-602. PubMed ID: 19882493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grip aperture scaling to object size in chronic stroke.
    Michaelsen SM; Magdalon EC; Levin MF
    Motor Control; 2009 Apr; 13(2):197-217. PubMed ID: 19454780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Neurocircuitry of Grasping: The influence of action intent on kinematic asymmetries in reach-to-grasp actions.
    Flindall J; Gonzalez CLR
    Atten Percept Psychophys; 2019 Oct; 81(7):2217-2236. PubMed ID: 31290131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of Upper Limb Motor Control and Function After Competitive and Noncompetitive Volleyball Exercises in Chronic Stroke Survivors: A Randomized Clinical Trial.
    Mandehgary Najafabadi M; Azad A; Mehdizadeh H; Behzadipour S; Fakhar M; Taghavi Azar Sharabiani P; Parnianpour M; Taghizadeh G; Khalaf K
    Arch Phys Med Rehabil; 2019 Mar; 100(3):401-411. PubMed ID: 30419232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Machine Learning-Based Assessment for Elbow Spasticity Using Inertial Sensors.
    Kim JY; Park G; Lee SA; Nam Y
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rehabilitation device to improve the hand grasp function of stroke patients using a patient-driven approach.
    Park W; Jeong W; Kwon GH; Kim YH; Kim L
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650482. PubMed ID: 24187299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action-perception theory.
    Kuntz JR; Karl JM; Doan JB; Whishaw IQ
    Exp Brain Res; 2018 Apr; 236(4):1091-1103. PubMed ID: 29441469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies.
    Burns MK; Pei D; Vinjamuri R
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaping of Reach-to-Grasp Kinematics by Intentions: A Meta-Analysis.
    Egmose I; Køppe S
    J Mot Behav; 2018; 50(2):155-165. PubMed ID: 28644719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Should object function matter during modeling of functional reach-to-grasp tasks in robot-assisted therapy?
    Nathan DE; Johnson MJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5695-8. PubMed ID: 17947163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary Examination of the Ability of a New Wearable Device to Capture Functional Hand Activity After Stroke.
    Simpson LA; Mow A; Menon C; Eng JJ
    Stroke; 2019 Dec; 50(12):3643-3646. PubMed ID: 31662119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.