These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 31545748)

  • 1. Progressive Transfer Learning and Adversarial Domain Adaptation for Cross-Domain Skin Disease Classification.
    Gu Y; Ge Z; Bonnington CP; Zhou J
    IEEE J Biomed Health Inform; 2020 May; 24(5):1379-1393. PubMed ID: 31545748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning Approach.
    S S; Dharani Devi G; V R; Jeyalakshmi J
    J Imaging Inform Med; 2024 Aug; 37(4):1488-1504. PubMed ID: 38424280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DART: Domain-Adversarial Residual-Transfer networks for unsupervised cross-domain image classification.
    Fang X; Bai H; Guo Z; Shen B; Hoi S; Xu Z
    Neural Netw; 2020 Jul; 127():182-192. PubMed ID: 32361548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
    Shin HC; Roth HR; Gao M; Lu L; Xu Z; Nogues I; Yao J; Mollura D; Summers RM
    IEEE Trans Med Imaging; 2016 May; 35(5):1285-98. PubMed ID: 26886976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attention Residual Learning for Skin Lesion Classification.
    Zhang J; Xie Y; Xia Y; Shen C
    IEEE Trans Med Imaging; 2019 Sep; 38(9):2092-2103. PubMed ID: 30668469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation.
    Tschandl P; Sinz C; Kittler H
    Comput Biol Med; 2019 Jan; 104():111-116. PubMed ID: 30471461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GP-CNN-DTEL: Global-Part CNN Model With Data-Transformed Ensemble Learning for Skin Lesion Classification.
    Tang P; Liang Q; Yan X; Xiang S; Zhang D
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2870-2882. PubMed ID: 32142460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-Supervised Nests of Melanocytes Segmentation Method Using Convolutional Autoencoders.
    Kucharski D; Kleczek P; Jaworek-Korjakowska J; Dyduch G; Gorgon M
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning and Handcrafted Method Fusion: Higher Diagnostic Accuracy for Melanoma Dermoscopy Images.
    Hagerty JR; Stanley RJ; Almubarak HA; Lama N; Kasmi R; Guo P; Drugge RJ; Rabinovitz HS; Oliviero M; Stoecker WV
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1385-1391. PubMed ID: 30624234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adversarial attack on deep learning-based dermatoscopic image recognition systems: Risk of misdiagnosis due to undetectable image perturbations.
    Allyn J; Allou N; Vidal C; Renou A; Ferdynus C
    Medicine (Baltimore); 2020 Dec; 99(50):e23568. PubMed ID: 33327315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melanoma detection using adversarial training and deep transfer learning.
    Zunair H; Ben Hamza A
    Phys Med Biol; 2020 Jul; 65(13):135005. PubMed ID: 32252036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin lesion segmentation using two-phase cross-domain transfer learning framework.
    Karri M; Annavarapu CSR; Acharya UR
    Comput Methods Programs Biomed; 2023 Apr; 231():107408. PubMed ID: 36805279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions.
    Brinker TJ; Hekler A; Enk AH; von Kalle C
    PLoS One; 2019; 14(6):e0218713. PubMed ID: 31233565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks.
    Vakli P; Deák-Meszlényi RJ; Hermann P; Vidnyánszky Z
    Gigascience; 2018 Dec; 7(12):. PubMed ID: 30395218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
    Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G
    Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
    Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A
    Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of skin lesions using transfer learning and augmentation with Alex-net.
    Hosny KM; Kassem MA; Foaud MM
    PLoS One; 2019; 14(5):e0217293. PubMed ID: 31112591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of medical image recognition technologies to detect melanomas using neural networks.
    Efimenko M; Ignatev A; Koshechkin K
    BMC Bioinformatics; 2020 Sep; 21(Suppl 11):270. PubMed ID: 32921304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building medical image classifiers with very limited data using segmentation networks.
    Wong KCL; Syeda-Mahmood T; Moradi M
    Med Image Anal; 2018 Oct; 49():105-116. PubMed ID: 30119038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.