These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31545839)

  • 1. Axial variation of deoxyhemoglobin density as a source of the low-frequency time lag structure in blood oxygenation level-dependent signals.
    Aso T; Urayama S; Fukuyama H; Murai T
    PLoS One; 2019; 14(9):e0222787. PubMed ID: 31545839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The resting-state fMRI arterial signal predicts differential blood transit time through the brain.
    Tong Y; Yao JF; Chen JJ; Frederick BD
    J Cereb Blood Flow Metab; 2019 Jun; 39(6):1148-1160. PubMed ID: 29333912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Resilient, Non-neuronal Source of the Spatiotemporal Lag Structure Detected by BOLD Signal-Based Blood Flow Tracking.
    Aso T; Jiang G; Urayama SI; Fukuyama H
    Front Neurosci; 2017; 11():256. PubMed ID: 28553198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfusion information extracted from resting state functional magnetic resonance imaging.
    Tong Y; Lindsey KP; Hocke LM; Vitaliano G; Mintzopoulos D; Frederick BD
    J Cereb Blood Flow Metab; 2017 Feb; 37(2):564-576. PubMed ID: 26873885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular effects of caffeine found in BOLD fMRI.
    Yang HS; Liang Z; Yao JF; Shen X; Frederick BD; Tong Y
    J Neurosci Res; 2019 Apr; 97(4):456-466. PubMed ID: 30488978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI).
    Yan L; Zhuo Y; Ye Y; Xie SX; An J; Aguirre GK; Wang J
    Magn Reson Med; 2009 Apr; 61(4):819-27. PubMed ID: 19189286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating and mitigating the effects of systemic low frequency oscillations (sLFO) on resting state networks in awake non-human primates using time lag dependent methodology.
    Cao L; Kohut SJ; Frederick BD
    Front Neuroimaging; 2022; 1():1031991. PubMed ID: 37555145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting resting-state brain activity by spontaneous cerebral blood volume fluctuations using whole brain vascular space occupancy imaging.
    Miao X; Gu H; Yan L; Lu H; Wang DJ; Zhou XJ; Zhuo Y; Yang Y
    Neuroimage; 2014 Jan; 84():575-84. PubMed ID: 24055705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional variations in vascular density correlate with resting-state and task-evoked blood oxygen level-dependent signal amplitude.
    Vigneau-Roy N; Bernier M; Descoteaux M; Whittingstall K
    Hum Brain Mapp; 2014 May; 35(5):1906-20. PubMed ID: 23843266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.
    Golestani AM; Wei LL; Chen JJ
    Neuroimage; 2016 Sep; 138():147-163. PubMed ID: 27177763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks.
    Li YC; Huang YA
    J Magn Reson Imaging; 2014 May; 39(5):1118-25. PubMed ID: 24027126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain.
    Tong Y; Frederick BD
    Neuroimage; 2010 Nov; 53(2):553-64. PubMed ID: 20600975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of BOLD cerebrovascular reactivity mapping and DSC MR perfusion imaging for prediction of neurovascular uncoupling potential in brain tumors.
    Pillai JJ; Zacà D
    Technol Cancer Res Treat; 2012 Aug; 11(4):361-74. PubMed ID: 22376130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring vascular reactivity with resting-state blood oxygenation level-dependent (BOLD) signal fluctuations: A potential alternative to the breath-holding challenge?
    Jahanian H; Christen T; Moseley ME; Pajewski NM; Wright CB; Tamura MK; Zaharchuk G;
    J Cereb Blood Flow Metab; 2017 Jul; 37(7):2526-2538. PubMed ID: 27683452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Mathematical Modeling Tests Hypotheses of the Neurovascular Coupling in fMRI.
    Lundengård K; Cedersund G; Sten S; Leong F; Smedberg A; Elinder F; Engström M
    PLoS Comput Biol; 2016 Jun; 12(6):e1004971. PubMed ID: 27310017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cerebral ischemia on evoked cerebral blood oxygenation responses and BOLD contrast functional MRI in stroke patients.
    Murata Y; Sakatani K; Hoshino T; Fujiwara N; Kano T; Nakamura S; Katayama Y
    Stroke; 2006 Oct; 37(10):2514-20. PubMed ID: 16946162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors.
    Sakatani K; Murata Y; Fujiwara N; Hoshino T; Nakamura S; Kano T; Katayama Y
    J Biomed Opt; 2007; 12(6):062110. PubMed ID: 18163813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal.
    Wise RG; Ide K; Poulin MJ; Tracey I
    Neuroimage; 2004 Apr; 21(4):1652-64. PubMed ID: 15050588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal.
    Shmueli K; van Gelderen P; de Zwart JA; Horovitz SG; Fukunaga M; Jansma JM; Duyn JH
    Neuroimage; 2007 Nov; 38(2):306-20. PubMed ID: 17869543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.