These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 31545849)

  • 1. Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide.
    Bo AB; Kim JD; Kim YS; Sin HT; Kim HJ; Khaitov B; Ko YK; Park KW; Choi JS
    PLoS One; 2019; 14(9):e0222933. PubMed ID: 31545849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract.
    Puig CG; Reigosa MJ; Valentão P; Andrade PB; Pedrol N
    PLoS One; 2018; 13(2):e0192872. PubMed ID: 29438430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection, isolation, and identification of fungi for bioherbicide production.
    Souza AR; Baldoni DB; Lima J; Porto V; Marcuz C; Machado C; Ferraz RC; Kuhn RC; Jacques RJ; Guedes JV; Mazutti MA
    Braz J Microbiol; 2017; 48(1):101-108. PubMed ID: 27769882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Phytotoxin with Selective Herbicidal Activity and Related Metabolites from the Phytopathogenic Fungus
    Li H; Hou J; Li B; Zhang L; Yu Z
    Molecules; 2024 Jun; 29(13):. PubMed ID: 38998991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resormycin, a novel herbicidal and antifungal antibiotic produced by a strain of Streptomyces platensis. I. Taxonomy, production, isolation and biological properties.
    Igarashi M; Kinoshita N; Ikeda T; Kameda M; Hamada M; Takeuchi T
    J Antibiot (Tokyo); 1997 Dec; 50(12):1020-5. PubMed ID: 9510908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Bipolaris yamadae as a bioherbicidal agent against grass weeds in arable crops.
    Tan M; Ding Y; Bourdôt GW; Qiang S
    Pest Manag Sci; 2024 Jan; 80(1):166-175. PubMed ID: 37367835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Herbicidal Activity of Secondary Metabolites Isolated from
    Ling L; Wang H; Zhang S; Luo Y; Song Z; Bing H; Qi H; Guo L; Xiang W; Wang JD; Zhao J; Wang X
    J Agric Food Chem; 2023 Nov; ():. PubMed ID: 37910789
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthesis and Herbicidal Activity of 2-(2-Oxo-3-pyridyl-benzothiazol-6-yloxy)hexanoic Acids.
    Huang Y; Li Z; Chen Y; Li W; Wei S; Ji Z
    J Agric Food Chem; 2024 Apr; 72(13):7457-7463. PubMed ID: 38527909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tank mixture additives approach to improve efficiency of bentazon against broadleaf weeds in peas.
    Balah MA; Hanafi A; Ghani SB
    J Environ Sci Health B; 2012; 47(5):390-6. PubMed ID: 22424063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curvulin and Phaeosphaeride A from
    Poluektova E; Tokarev Y; Sokornova S; Chisty L; Evidente A; Berestetskiy A
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30373298
    [No Abstract]   [Full Text] [Related]  

  • 11. Herbicidal proteins from Bacillus wiedmannii isolate ZT selectively inhibit ryegrass (Lolium temulentum L.).
    Eigharlou M; Hashemi Z; Mohammadi A; Khelghatibana F; Nami Y; Sadeghi A
    Pest Manag Sci; 2024 Jul; 80(7):3478-3490. PubMed ID: 38426586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidative Potential of a
    Tan LT; Chan KG; Chan CK; Khan TM; Lee LH; Goh BH
    Biomed Res Int; 2018; 2018():4823126. PubMed ID: 29805975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation, Characterization, and Bioherbicidal Potential of the 16-Residue Peptaibols from
    Song K; Ai Y; Zhou J; Dun B; Yue Q; Zhang L; Xu Y; Wang C
    J Agric Food Chem; 2024 Mar; 72(12):6315-6326. PubMed ID: 38470442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral Herbicide 2,4-D Ethylhexyl Ester: Absolute Configuration, Stereoselective Herbicidal Activity, Crop Safety, and Metabolic Behavior on Maize and Flixweed.
    Ou G; Mou L; Luo Y; Feng Y; Wu L; Lu P; Hu D; Zhang Y
    J Agric Food Chem; 2024 Jul; 72(26):14592-14600. PubMed ID: 38914518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Perspective on the Use of α-Bisabolol for Weed Control.
    Chaves JTL; Dias GDS; Pereira MM; Bastos LDS; Souza MIA; Vieira LFA; de Paula ACCFF; Marco CA; Marchiori PER; Bicalho EM
    J Agric Food Chem; 2024 Mar; 72(12):6289-6301. PubMed ID: 38502021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Culture optimization of Streptomyces sp. KRA16-334 for increased yield of new herbicide 334-W4.
    Kim YS; Jang KS; Choi JS
    PLoS One; 2024; 19(4):e0301104. PubMed ID: 38593133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of plant viruses as bioherbicides: the first virus-based bioherbicide and future opportunities.
    Charudattan R
    Pest Manag Sci; 2024 Jan; 80(1):103-114. PubMed ID: 37682594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herbicidal properties of antihypertensive drugs: calcium channel blockers.
    Abdullah HSTSH; Chia PW; Omar D; Chuah TS
    Sci Rep; 2021 Jul; 11(1):14227. PubMed ID: 34244589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling weeds with fungi, bacteria and viruses: a review.
    Harding DP; Raizada MN
    Front Plant Sci; 2015; 6():659. PubMed ID: 26379687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Search of New Tools for Weed Control Using
    Anese S; Rial C; Varela RM; Torres A; Molinillo JMG; Macías FA
    J Agric Food Chem; 2021 Aug; 69(31):8684-8694. PubMed ID: 34328733
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.