These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 31545898)
1. Molecular Mechanism of Binding Selectivity of Inhibitors toward BACE1 and BACE2 Revealed by Multiple Short Molecular Dynamics Simulations and Free-Energy Predictions. Chen J; Wang J; Yin B; Pang L; Wang W; Zhu W ACS Chem Neurosci; 2019 Oct; 10(10):4303-4318. PubMed ID: 31545898 [TBL] [Abstract][Full Text] [Related]
2. A series of molecular modeling techniques to reveal selective mechanisms of inhibitors to β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) and β-site amyloid precursor protein cleaving enzyme 2 (BACE2). Li S; Zhao H; Li J; Hao J; Yu H J Biomol Struct Dyn; 2021 May; 39(8):2824-2837. PubMed ID: 32276567 [TBL] [Abstract][Full Text] [Related]
3. Effects of Disulfide Bonds on Binding of Inhibitors to β-Amyloid Cleaving Enzyme 1 Decoded by Multiple Replica Accelerated Molecular Dynamics Simulations. Chen J; Yin B; Wang W; Sun H ACS Chem Neurosci; 2020 Jun; 11(12):1811-1826. PubMed ID: 32459964 [TBL] [Abstract][Full Text] [Related]
4. Binding of Inhibitors to BACE1 Affected by pH-Dependent Protonation: An Exploration from Multiple Replica Gaussian Accelerated Molecular Dynamics and MM-GBSA Calculations. Chen J; Zhang S; Wang W; Sun H; Zhang Q; Liu X ACS Chem Neurosci; 2021 Jul; 12(14):2591-2607. PubMed ID: 34185514 [TBL] [Abstract][Full Text] [Related]
5. Structure-Based Approaches to Improving Selectivity through Utilizing Explicit Water Molecules: Discovery of Selective β-Secretase (BACE1) Inhibitors over BACE2. Fujimoto K; Yoshida S; Tadano G; Asada N; Fuchino K; Suzuki S; Matsuoka E; Yamamoto T; Yamamoto S; Ando S; Kanegawa N; Tonomura Y; Ito H; Moechars D; Rombouts FJR; Gijsen HJM; Kusakabe KI J Med Chem; 2021 Mar; 64(6):3075-3085. PubMed ID: 33719429 [TBL] [Abstract][Full Text] [Related]
6. Structure-Based Design of Selective β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitors: Targeting the Flap to Gain Selectivity over BACE2. Fujimoto K; Matsuoka E; Asada N; Tadano G; Yamamoto T; Nakahara K; Fuchino K; Ito H; Kanegawa N; Moechars D; Gijsen HJM; Kusakabe KI J Med Chem; 2019 May; 62(10):5080-5095. PubMed ID: 31021626 [TBL] [Abstract][Full Text] [Related]
7. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility. Kumalo HM; Soliman ME J Recept Signal Transduct Res; 2016 Oct; 36(5):505-14. PubMed ID: 26804314 [TBL] [Abstract][Full Text] [Related]
9. Discovery of AM-6494: A Potent and Orally Efficacious β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitor with in Vivo Selectivity over BACE2. Pettus LH; Bourbeau MP; Bradley J; Bartberger MD; Chen K; Hickman D; Johnson M; Liu Q; Manning JR; Nanez A; Siegmund AC; Wen PH; Whittington DA; Allen JR; Wood S J Med Chem; 2020 Mar; 63(5):2263-2281. PubMed ID: 31589043 [TBL] [Abstract][Full Text] [Related]
10. Identification Mechanism of BACE1 on Inhibitors Probed by Using Multiple Separate Molecular Dynamics Simulations and Comparative Calculations of Binding Free Energies. Wang Y; Yang F; Yan D; Zeng Y; Wei B; Chen J; He W Molecules; 2023 Jun; 28(12):. PubMed ID: 37375328 [TBL] [Abstract][Full Text] [Related]
11. Highly Selective and Potent Human β-Secretase 2 (BACE2) Inhibitors against Type 2 Diabetes: Design, Synthesis, X-ray Structure and Structure-Activity Relationship Studies. Ghosh AK; Brindisi M; Yen YC; Lendy EK; Kovela S; Cárdenas EL; Reddy BS; Rao KV; Downs D; Huang X; Tang J; Mesecar AD ChemMedChem; 2019 Mar; 14(5):545-560. PubMed ID: 30637955 [TBL] [Abstract][Full Text] [Related]
12. Discovery of Extremely Selective Fused Pyridine-Derived β-Site Amyloid Precursor Protein-Cleaving Enzyme (BACE1) Inhibitors with High In Vivo Efficacy through 10s Loop Interactions. Ueno T; Matsuoka E; Asada N; Yamamoto S; Kanegawa N; Ito M; Ito H; Moechars D; Rombouts FJR; Gijsen HJM; Kusakabe KI J Med Chem; 2021 Oct; 64(19):14165-14174. PubMed ID: 34553947 [TBL] [Abstract][Full Text] [Related]
14. BACE1 Physiological Functions May Limit Its Use as Therapeutic Target for Alzheimer's Disease. Barão S; Moechars D; Lichtenthaler SF; De Strooper B Trends Neurosci; 2016 Mar; 39(3):158-169. PubMed ID: 26833257 [TBL] [Abstract][Full Text] [Related]
15. Asp32 and Asp228 determine the selective inhibition of BACE1 as shown by docking and molecular dynamics simulations. Hernández-Rodríguez M; Correa-Basurto J; Gutiérrez A; Vitorica J; Rosales-Hernández MC Eur J Med Chem; 2016 Nov; 124():1142-1154. PubMed ID: 27639619 [TBL] [Abstract][Full Text] [Related]
16. Identification of a BACE1 Binding Peptide Candidate for the Prevention of Amyloid Beta in Alzheimer's Disease. Read J; Suphioglu C Cell Physiol Biochem; 2019; 53(2):413-428. PubMed ID: 31415717 [TBL] [Abstract][Full Text] [Related]
17. BACE1 and BACE2 enzymatic activities in Alzheimer's disease. Ahmed RR; Holler CJ; Webb RL; Li F; Beckett TL; Murphy MP J Neurochem; 2010 Feb; 112(4):1045-53. PubMed ID: 19968762 [TBL] [Abstract][Full Text] [Related]
18. Distinct transcriptional regulation and function of the human BACE2 and BACE1 genes. Sun X; Wang Y; Qing H; Christensen MA; Liu Y; Zhou W; Tong Y; Xiao C; Huang Y; Zhang S; Liu X; Song W FASEB J; 2005 May; 19(7):739-49. PubMed ID: 15857888 [TBL] [Abstract][Full Text] [Related]
19. Prospecting and Structural Insight into the Binding of Novel Plant-Derived Molecules of Leea indica as Inhibitors of BACE1. Hosen SMZ; Rubayed M; Dash R; Junaid M; Mitra S; Alam MS; Dey R Curr Pharm Des; 2018; 24(33):3972-3979. PubMed ID: 30398111 [TBL] [Abstract][Full Text] [Related]