BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31546073)

  • 1. Effect of flow and humidity on indoor deposition of particulate matter.
    Kim JJ; Hann T; Lee SJ
    Environ Pollut; 2019 Dec; 255(Pt 2):113263. PubMed ID: 31546073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of fine particulate matter (PM
    Ryu J; Kim JJ; Byeon H; Go T; Lee SJ
    Environ Pollut; 2019 Feb; 245():253-259. PubMed ID: 30439635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on Characteristics of Particulate Matter Resuspension in School Classroom through Experiments Using a Simulation Chamber: Influence of Humidity.
    Cho S; Lee G; Park D; Kim M
    Int J Environ Res Public Health; 2021 Mar; 18(6):. PubMed ID: 33799654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions.
    Cong XC; Zhao JJ; Jing Z; Wang QG; Ni PF
    Environ Geochem Health; 2018 Dec; 40(6):2511-2524. PubMed ID: 29744699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of Particulate Matter Reduction Ability of 21 Indigenous Korean Evergreen Species for Indoor Use.
    Jang BK; Park K; Lee SY; Lee H; Yeon SH; Ji B; Lee CH; Cho JS
    Int J Environ Res Public Health; 2021 Sep; 18(18):. PubMed ID: 34574725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-resolved particle oxidative potential in the office, laboratory, and home: Evidence for the importance of water-soluble transition metals.
    Guo HB; Li M; Lyu Y; Cheng TT; Xv JJ; Li X
    Environ Pollut; 2019 Mar; 246():704-709. PubMed ID: 30623827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of ambient air PM₂.₅ concentration and meteorological condition on the indoor PM₂.₅ concentrations in a residential apartment in Beijing using a new approach.
    Han Y; Qi M; Chen Y; Shen H; Liu J; Huang Y; Chen H; Liu W; Wang X; Liu J; Xing B; Tao S
    Environ Pollut; 2015 Oct; 205():307-14. PubMed ID: 26123719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectual removal of indoor ultrafine PM using submicron water droplets.
    Kim D; Kim J; Lee SJ
    J Environ Manage; 2021 Oct; 296():113166. PubMed ID: 34217941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal efficiency of particulate matters at different underlying surfaces in Beijing.
    Liu J; Mo L; Zhu L; Yang Y; Liu J; Qiu D; Zhang Z; Liu J
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):408-17. PubMed ID: 26308922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes.
    Parker JL; Larson RR; Eskelson E; Wood EM; Veranth JM
    Indoor Air; 2008 Oct; 18(5):386-93. PubMed ID: 18647192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of fine particulate matter sources to indoor exposure in bars, restaurants, and cafes.
    Daly BJ; Schmid K; Riediker M
    Indoor Air; 2010 Jun; 20(3):204-12. PubMed ID: 20408901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indoor particulate matter and secondhand smoke: simulation of an exposure scenario.
    Protano C; Cattaruzza MS; Osborn JF; Vitali M
    Ann Ig; 2014; 26(2):186-9. PubMed ID: 24763452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of relative humidity and ground material on indoor walking-induced particle resuspension.
    Zheng S; Zhang J; Mou J; Du W; Yu Y; Wang L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(10):1044-1053. PubMed ID: 31343373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships of relative humidity with PM
    Lou C; Liu H; Li Y; Peng Y; Wang J; Dai L
    Environ Monit Assess; 2017 Oct; 189(11):582. PubMed ID: 29063278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.
    Miller SL; Facciola NA; Toohey D; Zhai J
    Int J Environ Res Public Health; 2017 Jan; 14(2):. PubMed ID: 28134841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly.
    Buczyńska AJ; Krata A; Van Grieken R; Brown A; Polezer G; De Wael K; Potgieter-Vermaak S
    Sci Total Environ; 2014 Aug; 490():134-43. PubMed ID: 24852612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Levels and indoor-outdoor relationships of size-specific particulate matter in naturally ventilated Portuguese schools.
    Madureira J; Paciência I; Fernandes Ede O
    J Toxicol Environ Health A; 2012; 75(22-23):1423-36. PubMed ID: 23095161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particulate matter concentration levels during intense haze event in an urban environment.
    Adeniran JA; Aremu AS; Saadu YO; Yusuf RO
    Environ Monit Assess; 2017 Dec; 190(1):41. PubMed ID: 29273920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and physicochemical properties of particulate matter in swine confinement barns.
    Shen D; Wu S; Li Z; Tang Q; Dai P; Li Y; Li C
    Environ Pollut; 2019 Jul; 250():746-753. PubMed ID: 31035157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of indoor air pollution and estimation of respiratory dosage under varied fuel-type and kitchen-type in the rural areas of Telangana state in India.
    Deepthi Y; Shiva Nagendra SM; Gummadi SN
    Sci Total Environ; 2019 Feb; 650(Pt 1):616-625. PubMed ID: 30208347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.