These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 315461)

  • 1. Adenosine receptors in frog sinus venosus: slow inhibitory potentials produced by adenine compounds and acetylcholine.
    Hartzell HC
    J Physiol; 1979 Aug; 293():23-49. PubMed ID: 315461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic basis of the hyperpolarizing action of adenyl compounds on sinus venosus of the tortoise heart.
    Hutter OF; Rankin AC
    J Physiol; 1984 Aug; 353():111-25. PubMed ID: 6090638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of cyclic AMP and its protein kinase in mediating acetylcholine release and the action of adenosine at frog motor nerve endings.
    Hirsh JK; Silinsky EM; Solsona CS
    Br J Pharmacol; 1990 Oct; 101(2):311-8. PubMed ID: 2175231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscarinic M(3) facilitation of acetylcholine release from rat myenteric neurons depends on adenosine outflow leading to activation of excitatory A(2A) receptors.
    Vieira C; Duarte-Araújo M; Adães S; Magalhães-Cardoso T; Correia-de-Sá P
    Neurogastroenterol Motil; 2009 Oct; 21(10):1118-e95. PubMed ID: 19470085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurones.
    Hartzell HC; Kuffler SW; Stickgold R; Yoshikami D
    J Physiol; 1977 Oct; 271(3):817-46. PubMed ID: 200739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of P1- and P2-purinoceptors in the guinea-pig and frog heart.
    Burnstock G; Meghji P
    Br J Pharmacol; 1981 Aug; 73(4):879-85. PubMed ID: 6974029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of sinus slowing and hyperpolarization caused by adenosine in sinus node.
    West GA; Belardinelli L
    Pflugers Arch; 1985 Jan; 403(1):75-81. PubMed ID: 3982962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetics of tubocurarine action and restricted diffusion within the synaptic cleft.
    Armstrong DL; Lester HA
    J Physiol; 1979 Sep; 294():365-86. PubMed ID: 229214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscarinic agonists and ATP increase the intracellular Ca2+ concentration in chick cochlear hair cells.
    Shigemoto T; Ohmori H
    J Physiol; 1990 Jan; 420():127-48. PubMed ID: 2324982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings.
    Silinsky EM
    J Physiol; 1984 Jan; 346():243-56. PubMed ID: 6321717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased acetylcholine content induced by adenosine in a sympathetic ganglion and its subsequent mobilization by electrical stimulation.
    Tandon A; Collier B
    J Neurochem; 1993 Jun; 60(6):2124-33. PubMed ID: 8492121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiation of postjunctional cholinergic sensitivity of rat diaphragm muscle by high-energy-phosphate adenine nucleotides.
    Ewald DA
    J Membr Biol; 1976 Oct; 29(1-2):47-65. PubMed ID: 185389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionophoretically applied acetylcholine and vagal stimulation in the arrested sinus venosus of the toad, Bufo marinus.
    Bramich NJ; Brock JA; Edwards FR; Hirst GD
    J Physiol; 1994 Jul; 478 ( Pt 2)(Pt 2):289-300. PubMed ID: 7965847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the hyperpolarization-activated current (I(f)) by adenosine in rabbit sinoatrial myocytes.
    Zaza A; Rocchetti M; DiFrancesco D
    Circulation; 1996 Aug; 94(4):734-41. PubMed ID: 8772696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources of adenosine released during neuromuscular transmission in the rat.
    Smith DO
    J Physiol; 1991 Jan; 432():343-54. PubMed ID: 1653323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of adenine nucleotides on cutaneous afferent nerve activity.
    Bleehen T
    Br J Pharmacol; 1978 Apr; 62(4):573-7. PubMed ID: 656702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of adenosine, adenosine triphosphate, adenosine deaminase, dipyridamole and aminophylline on acetylcholine release from electrically-stimulated brain slices.
    Pedata F; Antonelli T; Lambertini L; Beani L; Pepeu G
    Neuropharmacology; 1983 May; 22(5):609-14. PubMed ID: 6877538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea-pig.
    Kitamura K; Kuriyama H
    J Physiol; 1979 Aug; 293():119-33. PubMed ID: 501578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Succinyl derivatives of N-tris (hydroxymethyl) methyl-2-aminoethane sulphonic acid: their effects on the frog neuromuscular junction.
    del Castillo J; Escalona de Motta G; Eterović VA; Ferchmin PA
    Br J Pharmacol; 1985 Feb; 84(2):275-88. PubMed ID: 3872147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical responses of smooth muscle cells of the rabbit ear artery to adenosine triphosphate.
    Suzuki H
    J Physiol; 1985 Feb; 359():401-15. PubMed ID: 3999045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.