These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31546176)

  • 21. A biodegradable 3D woven magnesium-based scaffold for orthopedic implants.
    Xue J; Singh S; Zhou Y; Perdomo-Pantoja A; Tian Y; Gupta N; Witham TF; Grayson WL; Weihs TP
    Biofabrication; 2022 Jun; 14(3):. PubMed ID: 35617927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm.
    Mukherjee K; Gupta S
    Biomech Model Mechanobiol; 2016 Apr; 15(2):389-403. PubMed ID: 26130375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elastic properties of a porous titanium-bone tissue composite.
    Rubshtein AP; Makarova EB; Rinkevich AB; Medvedeva DS; Yakovenkova LI; Vladimirov AB
    Mater Sci Eng C Mater Biol Appl; 2015; 52():54-60. PubMed ID: 25953540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating.
    Tan L; Wang Q; Lin X; Wan P; Zhang G; Zhang Q; Yang K
    Acta Biomater; 2014 May; 10(5):2333-40. PubMed ID: 24361529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impacts of dynamic degradation on the morphological and mechanical characterisation of porous magnesium scaffold.
    Md Saad AP; Prakoso AT; Sulong MA; Basri H; Wahjuningrum DA; Syahrom A
    Biomech Model Mechanobiol; 2019 Jun; 18(3):797-811. PubMed ID: 30607641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants.
    Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW
    J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn-Mg Alloy.
    Bühring J; Voshage M; Schleifenbaum JH; Jahr H; Schröder KU
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds.
    Kopp A; Derra T; Müther M; Jauer L; Schleifenbaum JH; Voshage M; Jung O; Smeets R; Kröger N
    Acta Biomater; 2019 Oct; 98():23-35. PubMed ID: 30959185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance.
    Bornapour M; Celikin M; Cerruti M; Pekguleryuz M
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration.
    Parai R; Bandyopadhyay-Ghosh S
    J Mech Behav Biomed Mater; 2019 Aug; 96():45-52. PubMed ID: 31029994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the bone ultrastructure around biodegradable Mg-xGd implants using small angle X-ray scattering and X-ray diffraction.
    Zeller-Plumhoff B; Malich C; Krüger D; Campbell G; Wiese B; Galli S; Wennerberg A; Willumeit-Römer R; Wieland DCF
    Acta Biomater; 2020 Jan; 101():637-645. PubMed ID: 31734411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical evaluation of bulk material properties of dental composites using two-phase finite element models.
    Li J; Li H; Fok AS; Watts DC
    Dent Mater; 2012 Sep; 28(9):996-1003. PubMed ID: 22727356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying the degradation of degradable implants and bone formation in the femoral condyle using micro-CT 3D reconstruction.
    Xu Y; Meng H; Yin H; Sun Z; Peng J; Xu X; Guo Q; Xu W; Yu X; Yuan Z; Xiao B; Wang C; Wang Y; Liu S; Lu S; Wang Z; Wang A
    Exp Ther Med; 2018 Jan; 15(1):93-102. PubMed ID: 29375677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D nanoscale analysis of bone healing around degrading Mg implants evaluated by X-ray scattering tensor tomography.
    Liebi M; Lutz-Bueno V; Guizar-Sicairos M; Schönbauer BM; Eichler J; Martinelli E; Löffler JF; Weinberg A; Lichtenegger H; Grünewald TA
    Acta Biomater; 2021 Oct; 134():804-817. PubMed ID: 34333163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative biomechanical and radiological characterization of osseointegration of a biodegradable magnesium alloy pin and a copolymeric control for osteosynthesis.
    Lindtner RA; Castellani C; Tangl S; Zanoni G; Hausbrandt P; Tschegg EK; Stanzl-Tschegg SE; Weinberg AM
    J Mech Behav Biomed Mater; 2013 Dec; 28():232-43. PubMed ID: 24001403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.
    Melancon D; Bagheri ZS; Johnston RB; Liu L; Tanzer M; Pasini D
    Acta Biomater; 2017 Nov; 63():350-368. PubMed ID: 28927929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatigue and quasi-static mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys.
    Hedayati R; Ahmadi SM; Lietaert K; Tümer N; Li Y; Amin Yavari S; Zadpoor AA
    J Biomed Mater Res A; 2018 Jul; 106(7):1798-1811. PubMed ID: 29468807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A stochastic micro to macro mechanical model for the evolution of bone-implant interface stiffness.
    Xie J; Rittel D; Shemtov-Yona K; Shah FA; Palmquist A
    Acta Biomater; 2021 Sep; 131():415-423. PubMed ID: 34129958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How does mechanical stimulus affect the coupling process of the scaffold degradation and bone formation: An in silico approach.
    Shi Q; Shui H; Chen Q; Li ZY
    Comput Biol Med; 2020 Feb; 117():103588. PubMed ID: 32072975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.