BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31546200)

  • 1. A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection.
    Wei X; Qin C; Gu C; He C; Yuan Q; Liu M; Zhuang L; Wan H; Wang P
    Biosens Bioelectron; 2019 Dec; 145():111673. PubMed ID: 31546200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bioinspired in vitro bioelectronic tongue with human T2R38 receptor for high-specificity detection of N-C=S-containing compounds.
    Qin C; Qin Z; Zhao D; Pan Y; Zhuang L; Wan H; Di Pizio A; Malach E; Niv MY; Huang L; Hu N; Wang P
    Talanta; 2019 Jul; 199():131-139. PubMed ID: 30952236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of Umami Tastants Using Floating Electrode-Based Bioelectronic Tongue Mimicking Insect Taste Systems.
    Lee M; Jung JW; Kim D; Ahn YJ; Hong S; Kwon HW
    ACS Nano; 2015 Dec; 9(12):11728-36. PubMed ID: 26563753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection.
    Ahn SR; An JH; Jang IH; Na W; Yang H; Cho KH; Lee SH; Song HS; Jang J; Park TH
    Biosens Bioelectron; 2018 Oct; 117():628-636. PubMed ID: 30005383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Umami evaluation in taste epithelium on microelectrode array by extracellular electrophysiological recording.
    Zhang D; Zhang F; Zhang Q; Lu Y; Liu Q; Wang P
    Biochem Biophys Res Commun; 2013 Aug; 438(2):334-9. PubMed ID: 23892037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Umami taste responses are mediated by alpha-transducin and alpha-gustducin.
    He W; Yasumatsu K; Varadarajan V; Yamada A; Lem J; Ninomiya Y; Margolskee RF; Damak S
    J Neurosci; 2004 Sep; 24(35):7674-80. PubMed ID: 15342734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel bioelectronic tongue in vivo for highly sensitive bitterness detection with brain-machine interface.
    Qin Z; Zhang B; Hu L; Zhuang L; Hu N; Wang P
    Biosens Bioelectron; 2016 Apr; 78():374-380. PubMed ID: 26655176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Integrated Cardiomyocyte Biosensors for Bitter Detection and Cardiotoxicity Assessment.
    Wei X; Jiang D; Chen C; Wu J; Qin C; Yuan Q; Xue Y; Xiong Y; Zhuang L; Hu N; Wang P
    ACS Sens; 2021 Jul; 6(7):2593-2604. PubMed ID: 34253023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel-based Bioelectronic Tongue for the Evaluation of Umami Taste in Fermented Fish.
    Liu J; Cha YK; Choi Y; Lee SE; Wang G; Zhao S; Park TH; Liu Y; Hong S
    ACS Sens; 2023 Jul; 8(7):2750-2760. PubMed ID: 37409469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles.
    Ahn SR; An JH; Song HS; Park JW; Lee SH; Kim JH; Jang J; Park TH
    ACS Nano; 2016 Aug; 10(8):7287-96. PubMed ID: 27327579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bioelectronic taste sensor based on bioengineered Escherichia coli cells combined with ITO-constructed electrochemical sensors.
    Wang J; Kong S; Chen F; Chen W; Du L; Cai W; Huang L; Wu C; Zhang DW
    Anal Chim Acta; 2019 Nov; 1079():73-78. PubMed ID: 31387721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of a new porcine taste-bud tissue biosensor for the detection of umami substances and their synergistic effect.
    Kong L; Wang Y; Shu G; Wang R; Feng Y; Zhu M
    Biosens Bioelectron; 2022 Aug; 210():114304. PubMed ID: 35550938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimetallic bionic taste sensor for perception of the synergistic effect of umami substances.
    Yu Y; Jiang S; Cui Z; Zhang N; Li M; Liu J; Meng H; Wang S; Zhang Y; Han J; Sun X; Zhao W; Liu Y
    Biosens Bioelectron; 2023 Aug; 234():115357. PubMed ID: 37149968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biomimetic bioelectronic tongue: A switch for On- and Off- response of acid sensations.
    Zhang W; Chen P; Zhou L; Qin Z; Gao K; Yao J; Li C; Wang P
    Biosens Bioelectron; 2017 Jun; 92():523-528. PubMed ID: 27836602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional bitter taste receptors are expressed in brain cells.
    Singh N; Vrontakis M; Parkinson F; Chelikani P
    Biochem Biophys Res Commun; 2011 Mar; 406(1):146-51. PubMed ID: 21303656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple receptor systems for glutamate detection in the taste organ.
    Yasuo T; Kusuhara Y; Yasumatsu K; Ninomiya Y
    Biol Pharm Bull; 2008 Oct; 31(10):1833-7. PubMed ID: 18827337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the distribution of umami receptors on the tongue and its signal coding logic based on taste bud biosensor.
    Fan Y; Huang Y; Zhang N; Chen G; Jiang S; Zhang Y; Pang G; Wang W; Liu Y
    Biosens Bioelectron; 2022 Feb; 197():113780. PubMed ID: 34801794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bioelectronic nose and tongue using olfactory and taste receptors: Analytical tools for food quality and safety assessment.
    Son M; Park TH
    Biotechnol Adv; 2018; 36(2):371-379. PubMed ID: 29289691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential covariation in taste responsiveness to bitter stimuli in rats.
    Brasser SM; Mozhui K; Smith DV
    Chem Senses; 2005 Nov; 30(9):793-9. PubMed ID: 16267162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rats fail to discriminate quinine from denatonium: implications for the neural coding of bitter-tasting compounds.
    Spector AC; Kopka SL
    J Neurosci; 2002 Mar; 22(5):1937-41. PubMed ID: 11880524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.