BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31546303)

  • 1. Production of Bio-Based Isoprene by the Mevalonate Pathway Cassette in
    Lee HW; Park JH; Lee HS; Choi W; Seo SH; Anggraini ID; Choi ES; Lee HW
    J Microbiol Biotechnol; 2019 Oct; 29(10):1656-1664. PubMed ID: 31546303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-modular engineering for renewable production of isoprene via mevalonate pathway in Escherichia coli.
    Liu CL; Dong HG; Zhan J; Liu X; Yang Y
    J Appl Microbiol; 2019 Apr; 126(4):1128-1139. PubMed ID: 30656788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel MVA-mediated pathway for isoprene production in engineered E. coli.
    Yang J; Nie Q; Liu H; Xian M; Liu H
    BMC Biotechnol; 2016 Jan; 16():5. PubMed ID: 26786050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production.
    Liu CL; Bi HR; Bai Z; Fan LH; Tan TW
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):239-250. PubMed ID: 30374674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways.
    Guo J; Cao Y; Liu H; Zhang R; Xian M; Liu H
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2597-2608. PubMed ID: 30719552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic process optimization for the in vitro production of isoprene from mevalonate.
    Cheng T; Liu H; Zou H; Chen N; Shi M; Xie C; Zhao G; Xian M
    Microb Cell Fact; 2017 Jan; 16(1):8. PubMed ID: 28068985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.
    Yang C; Gao X; Jiang Y; Sun B; Gao F; Yang S
    Metab Eng; 2016 Sep; 37():79-91. PubMed ID: 27174717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16.
    Gruber S; Hagen J; Schwab H; Koefinger P
    J Biotechnol; 2014 Sep; 186():74-82. PubMed ID: 24998763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts.
    Kim JH; Wang C; Jang HJ; Cha MS; Park JE; Jo SY; Choi ES; Kim SW
    Microb Cell Fact; 2016 Dec; 15(1):214. PubMed ID: 28010736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Improving isoprene production by engineered heterologous mevalonate pathway in Escherichia coli].
    Feng F; Xu Y; Tao Y; Liu W; Lin B
    Sheng Wu Gong Cheng Xue Bao; 2015 Jul; 31(7):1073-81. PubMed ID: 26647582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprint of "versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16".
    Gruber S; Hagen J; Schwab H; Koefinger P
    J Biotechnol; 2014 Dec; 192 Pt B():410-8. PubMed ID: 25284803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Engineering of an L-arabinose metabolic pathway in Ralstonia eutropha W50].
    Lu X; Liu G; Wang Y; Ding J; Weng W
    Wei Sheng Wu Xue Bao; 2013 Dec; 53(12):1267-75. PubMed ID: 24697099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-Production of Isoprene and Lactate by Engineered
    Cheng T; Liang X; Wang Y; Chen N; Feng D; Liang F; Xie C; Liu T; Zou H
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli.
    Yang J; Xian M; Su S; Zhao G; Nie Q; Jiang X; Zheng Y; Liu W
    PLoS One; 2012; 7(4):e33509. PubMed ID: 22558074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of inorganic phosphate limitation to efficient isoprene production in Pantoea ananatis.
    Nitta N; Tajima Y; Katashkina JI; Yamamoto Y; Onuki A; Rachi H; Kazieva E; Nishio Y
    J Appl Microbiol; 2020 Mar; 128(3):763-774. PubMed ID: 31738465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of inducible expression vectors for improved protein production in Ralstonia eutropha H16 derived host strains.
    Gruber S; Schwendenwein D; Magomedova Z; Thaler E; Hagen J; Schwab H; Heidinger P
    J Biotechnol; 2016 Oct; 235():92-9. PubMed ID: 27085887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extension of the substrate utilization range of Ralstonia eutropha strain H16 by metabolic engineering to include mannose and glucose.
    Sichwart S; Hetzler S; Bröker D; Steinbüchel A
    Appl Environ Microbiol; 2011 Feb; 77(4):1325-34. PubMed ID: 21169447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of Ralstonia eutropha for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose.
    Zhang YZ; Liu GM; Weng WQ; Ding JY; Liu SJ
    J Biotechnol; 2015 Feb; 195():82-8. PubMed ID: 25541463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.