These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 31546304)

  • 1. Biochemical and Biodiversity Insights into Heavy Metal Ion-Responsive Transcription Regulators for Synthetic Biological Heavy Metal Sensors.
    Jung J; Lee SJ
    J Microbiol Biotechnol; 2019 Oct; 29(10):1522-1542. PubMed ID: 31546304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants of metal selectivity in prokaryotic metal-responsive transcriptional regulators.
    Pennella MA; Giedroc DP
    Biometals; 2005 Aug; 18(4):413-28. PubMed ID: 16158234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach.
    Bereza-Malcolm LT; Mann G; Franks AE
    ACS Synth Biol; 2015 May; 4(5):535-46. PubMed ID: 25299321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric control of metal-responsive transcriptional regulators in bacteria.
    Baksh KA; Zamble DB
    J Biol Chem; 2020 Feb; 295(6):1673-1684. PubMed ID: 31857375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico identification and characterization of sensory motifs in the transcriptional regulators of the ArsR-SmtB family.
    Roy R; Samanta S; Patra S; Mahato NK; Saha RP
    Metallomics; 2018 Oct; 10(10):1476-1500. PubMed ID: 30191942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal homeostasis in bacteria: the role of ArsR-SmtB family of transcriptional repressors in combating varying metal concentrations in the environment.
    Saha RP; Samanta S; Patra S; Sarkar D; Saha A; Singh MK
    Biometals; 2017 Aug; 30(4):459-503. PubMed ID: 28512703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry.
    Kim HJ; Lim JW; Jeong H; Lee SJ; Lee DW; Kim T; Lee SJ
    Biosens Bioelectron; 2016 May; 79():701-8. PubMed ID: 26773374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor.
    Hui CY; Guo Y; Li LM; Liu L; Chen YT; Yi J; Zhang NX
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):6087-6102. PubMed ID: 34291315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chimeric MerR-Family Regulators and Logic Elements for the Design of Metal Sensitive Genetic Circuits in
    Ghataora JS; Gebhard S; Reeksting BJ
    ACS Synth Biol; 2023 Mar; 12(3):735-749. PubMed ID: 36629785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering whole-cell microbial biosensors: Design principles and applications in monitoring and treatment of heavy metals and organic pollutants.
    Liu C; Yu H; Zhang B; Liu S; Liu CG; Li F; Song H
    Biotechnol Adv; 2022 Nov; 60():108019. PubMed ID: 35853551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic biology for microbial heavy metal biosensors.
    Kim HJ; Jeong H; Lee SJ
    Anal Bioanal Chem; 2018 Feb; 410(4):1191-1203. PubMed ID: 29184994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the Metal(loid) Specificity of Whole-Cell Bioreporters by Genetic Engineering of ZntR Metal-Binding Loops.
    Kim H; Jang G; Kim BG; Yoon Y
    J Microbiol Biotechnol; 2020 May; 30(5):681-688. PubMed ID: 32482933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific heavy metal/metalloid sensors: current state and perspectives.
    Kim H; Jang G; Yoon Y
    Appl Microbiol Biotechnol; 2020 Feb; 104(3):907-914. PubMed ID: 31832713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes.
    Jung J; Jeong H; Kim HJ; Lee DW; Lee SJ
    Mar Genomics; 2016 Dec; 30():73-76. PubMed ID: 27435301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of primary (alpha(3)N) and vestigial (alpha(5)) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins.
    Busenlehner LS; Weng TC; Penner-Hahn JE; Giedroc DP
    J Mol Biol; 2002 Jun; 319(3):685-701. PubMed ID: 12054863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paralogous Regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a Basis for Arsenic Biosensor Development.
    Fernández M; Morel B; Ramos JL; Krell T
    Appl Environ Microbiol; 2016 Jul; 82(14):4133-4144. PubMed ID: 27208139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals.
    Bontidean I; Lloyd JR; Hobman JL; Wilson JR; Csöregi E; Mattiasson B; Brown NL
    J Inorg Biochem; 2000 Apr; 79(1-4):225-9. PubMed ID: 10830870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Cell-Based Sensors with Programmed Selectivity and Sensitivity.
    Bernard E; Wang B
    Methods Mol Biol; 2017; 1572():349-363. PubMed ID: 28299699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family.
    Ibáñez MM; Checa SK; Soncini FC
    J Bacteriol; 2015 May; 197(9):1606-13. PubMed ID: 25691529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors.
    Osman D; Cavet JS
    Nat Prod Rep; 2010 May; 27(5):668-80. PubMed ID: 20442958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.