BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 31546344)

  • 1. Sustained release of vitamin C from PCL coated TCP induces proliferation and differentiation of osteoblast cells and suppresses osteosarcoma cell growth.
    Bose S; Sarkar N; Vahabzadeh S
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110096. PubMed ID: 31546344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxic and osteogenic effects of crocin and bicarbonate from calcium phosphates for potential chemopreventative and anti-inflammatory applications in vitro and in vivo.
    Koski C; Sarkar N; Bose S
    J Mater Chem B; 2020 Mar; 8(10):2048-2062. PubMed ID: 32064472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds.
    Sarkar N; Bose S
    Acta Biomater; 2020 Sep; 114():407-420. PubMed ID: 32652224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed polycaprolactone scaffolds coated with beta tricalcium phosphate for bone regeneration.
    Javkhlan Z; Hsu SH; Chen RS; Chen MH
    J Formos Med Assoc; 2024 Jan; 123(1):71-77. PubMed ID: 37709573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zoledronic Acid-Loaded β-TCP Inhibits Tumor Proliferation and Osteoclast Activation: Development of a Functional Bone Substitute for an Efficient Osteosarcoma Treatment.
    Kameda Y; Aizawa M; Sato T; Honda M
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone, β-tricalcium phosphate, and collagen nanofibers: fabrication, physical properties, and in vitro cell activity for bone tissue regeneration.
    Yeo M; Lee H; Kim G
    Biomacromolecules; 2011 Feb; 12(2):502-10. PubMed ID: 21189025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of rhBMP-2 Loaded PCL/
    Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB
    Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allogenic chondrocyte/osteoblast-loaded β-tricalcium phosphate bioceramic scaffolds for articular cartilage defect treatment.
    Wu S; Kai Z; Wang D; Tao L; Zhang P; Wang D; Liu D; Sun S; Zhong J
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1570-1576. PubMed ID: 31007085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chitosan-loaded hydroxyapatite on osteoblasts and osteosarcoma for chemopreventative applications.
    Koski C; Vu AA; Bose S
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111041. PubMed ID: 32600681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of vitamin C on osteoblast proliferation and osteosarcoma inhibition using plasma coated hydroxyapatite on titanium implants.
    Sarkar N; Morton H; Bose S
    Surf Coat Technol; 2020 Jul; 394():. PubMed ID: 32612317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds.
    Rai B; Lin JL; Lim ZX; Guldberg RE; Hutmacher DW; Cool SM
    Biomaterials; 2010 Nov; 31(31):7960-70. PubMed ID: 20688388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival.
    Touri M; Moztarzadeh F; Osman NAA; Dehghan MM; Mozafari M
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():236-242. PubMed ID: 29519434
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Nakhaee FM; Rajabi M; Bakhsheshi-Rad HR
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34038876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium phosphate scaffolds with defined interconnecting channel structure provide a mimetic 3D niche for bone marrow metastasized tumor cell growth.
    Aveic S; Davtalab R; Vogt M; Weber M; Buttler P; Tonini GP; Fischer H
    Acta Biomater; 2019 Apr; 88():527-539. PubMed ID: 30797105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering.
    Khojasteh A; Fahimipour F; Eslaminejad MB; Jafarian M; Jahangir S; Bastami F; Tahriri M; Karkhaneh A; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():780-8. PubMed ID: 27612772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/beta-TCP scaffolds.
    Haimi S; Suuriniemi N; Haaparanta AM; Ellä V; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Kellomäki M; Miettinen S; Suuronen R
    Tissue Eng Part A; 2009 Jul; 15(7):1473-80. PubMed ID: 19072198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis.
    Tarafder S; Bose S
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9955-65. PubMed ID: 24826838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.