These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 31546353)

  • 1. Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity.
    Dave K; Gomes VG
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110078. PubMed ID: 31546353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved biomaterials for tissue engineering applications: surface modification of polymers.
    Vasita R; Shanmugam I K; Katt DS
    Curr Top Med Chem; 2008; 8(4):341-53. PubMed ID: 18393896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells.
    Nie X; Wang DA
    Biomater Sci; 2018 Oct; 6(11):2798-2811. PubMed ID: 30229775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications.
    Przekora A
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():1036-1051. PubMed ID: 30678895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Synthetic Biointerfaces: From Reversible Chemical Interactions to Tunable Biological Effects.
    Ma Y; Tian X; Liu L; Pan J; Pan G
    Acc Chem Res; 2019 Jun; 52(6):1611-1622. PubMed ID: 30793586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biologically active chitosan systems for tissue engineering and regenerative medicine.
    Jiang T; Kumbar SG; Nair LS; Laurencin CT
    Curr Top Med Chem; 2008; 8(4):354-64. PubMed ID: 18393897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycomics: New Challenges and Opportunities in Regenerative Medicine.
    Russo L; Cipolla L
    Chemistry; 2016 Sep; 22(38):13380-8. PubMed ID: 27400428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-scaffold interactions in the bone tissue engineering triad.
    Murphy CM; O'Brien FJ; Little DG; Schindeler A
    Eur Cell Mater; 2013 Sep; 26():120-32. PubMed ID: 24052425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold.
    Hu Y; Dan W; Xiong S; Kang Y; Dhinakar A; Wu J; Gu Z
    Acta Biomater; 2017 Jan; 47():135-148. PubMed ID: 27744068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent development and biomedical applications of decellularized extracellular matrix biomaterials.
    Yao Q; Zheng YW; Lan QH; Kou L; Xu HL; Zhao YZ
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109942. PubMed ID: 31499951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responsive cell-material interfaces.
    Dhowre HS; Rajput S; Russell NA; Zelzer M
    Nanomedicine (Lond); 2015; 10(5):849-71. PubMed ID: 25816884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive peptide-modified biomaterials for bone regeneration.
    Lee JY; Choi YS; Lee SJ; Chung CP; Park YJ
    Curr Pharm Des; 2011; 17(25):2663-76. PubMed ID: 21728982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomaterial scaffolds for tissue engineering.
    Mallick KK; Cox SC
    Front Biosci (Elite Ed); 2013 Jan; 5(1):341-60. PubMed ID: 23276994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymeric scaffolds in tissue engineering: a literature review.
    Jafari M; Paknejad Z; Rad MR; Motamedian SR; Eghbal MJ; Nadjmi N; Khojasteh A
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):431-459. PubMed ID: 26496456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the regenerative microenvironment with biomaterials.
    Rice JJ; Martino MM; De Laporte L; Tortelli F; Briquez PS; Hubbell JA
    Adv Healthc Mater; 2013 Jan; 2(1):57-71. PubMed ID: 23184739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanophysical Cues in Extracellular Matrix Regulation of Cell Behavior.
    Wang T; Nanda SS; Papaefthymiou GC; Yi DK
    Chembiochem; 2020 May; 21(9):1254-1264. PubMed ID: 31868957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.