These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 31546353)
21. Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins. Hong JM; Kim BJ; Shim JH; Kang KS; Kim KJ; Rhie JW; Cha HJ; Cho DW Acta Biomater; 2012 Jul; 8(7):2578-86. PubMed ID: 22480947 [TBL] [Abstract][Full Text] [Related]
22. [Advance in research of osteoblast adhesion to bioactive materials]. Niu X; Luo Y; Pan J; Wang Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):848-52. PubMed ID: 16156288 [TBL] [Abstract][Full Text] [Related]
23. Self assembled temperature responsive surfaces for generation of cell patches for bone tissue engineering. Valmikinathan CM; Chang W; Xu J; Yu X Biofabrication; 2012 Sep; 4(3):035006. PubMed ID: 22914662 [TBL] [Abstract][Full Text] [Related]
24. The influence of topography on tissue engineering perspective. Mansouri N; SamiraBagheri Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():906-21. PubMed ID: 26838922 [TBL] [Abstract][Full Text] [Related]
25. Biological responses to physicochemical properties of biomaterial surface. Rahmati M; Silva EA; Reseland JE; A Heyward C; Haugen HJ Chem Soc Rev; 2020 Aug; 49(15):5178-5224. PubMed ID: 32642749 [TBL] [Abstract][Full Text] [Related]
26. Scaffold: a novel carrier for cell and drug delivery. Garg T; Singh O; Arora S; Murthy R Crit Rev Ther Drug Carrier Syst; 2012; 29(1):1-63. PubMed ID: 22356721 [TBL] [Abstract][Full Text] [Related]
27. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
28. Fibrin as a scaffold for cardiac tissue engineering. Barsotti MC; Felice F; Balbarini A; Di Stefano R Biotechnol Appl Biochem; 2011; 58(5):301-10. PubMed ID: 21995533 [TBL] [Abstract][Full Text] [Related]
29. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908 [TBL] [Abstract][Full Text] [Related]
30. A gold nanoparticle coated porcine cholecyst-derived bioscaffold for cardiac tissue engineering. Nair RS; Ameer JM; Alison MR; Anilkumar TV Colloids Surf B Biointerfaces; 2017 Sep; 157():130-137. PubMed ID: 28578271 [TBL] [Abstract][Full Text] [Related]
31. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering. Alagoz AS; Rodriguez-Cabello JC; Hasirci V Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870 [TBL] [Abstract][Full Text] [Related]
32. Recent Advancements in Decellularized Matrix-Based Biomaterials for Musculoskeletal Tissue Regeneration. Kim H; Kim Y; Fendereski M; Hwang NS; Hwang Y Adv Exp Med Biol; 2018; 1077():149-162. PubMed ID: 30357688 [TBL] [Abstract][Full Text] [Related]
33. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications. S G; T G; K V; Faleh A A; Sukumaran A; P N S Int J Biol Macromol; 2018 Dec; 120(Pt A):876-885. PubMed ID: 30171951 [TBL] [Abstract][Full Text] [Related]
34. Bio-inspired 3D microenvironments: a new dimension in tissue engineering. Magin CM; Alge DL; Anseth KS Biomed Mater; 2016 Mar; 11(2):022001. PubMed ID: 26942469 [TBL] [Abstract][Full Text] [Related]
35. Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering. Setayeshmehr M; Esfandiari E; Rafieinia M; Hashemibeni B; Taheri-Kafrani A; Samadikuchaksaraei A; Kaplan DL; Moroni L; Joghataei MT Tissue Eng Part B Rev; 2019 Jun; 25(3):202-224. PubMed ID: 30648478 [TBL] [Abstract][Full Text] [Related]
36. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Subramanian A; Krishnan UM; Sethuraman S J Biomed Sci; 2009 Nov; 16(1):108. PubMed ID: 19939265 [TBL] [Abstract][Full Text] [Related]
37. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds. Müller BM; Loth R; Hoffmeister PG; Zühl F; Kalbitzer L; Hacker MC; Schulz-Siegmund M Acta Biomater; 2017 Mar; 51():148-160. PubMed ID: 28069495 [TBL] [Abstract][Full Text] [Related]
38. The effect of pore size on cell adhesion in collagen-GAG scaffolds. O'Brien FJ; Harley BA; Yannas IV; Gibson LJ Biomaterials; 2005 Feb; 26(4):433-41. PubMed ID: 15275817 [TBL] [Abstract][Full Text] [Related]
39. Current state of fabrication technologies and materials for bone tissue engineering. Wubneh A; Tsekoura EK; Ayranci C; Uludağ H Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515 [TBL] [Abstract][Full Text] [Related]
40. Tissue engineering of human knee meniscus using functionalized and reinforced silk-polyvinyl alcohol composite three-dimensional scaffolds: Understanding the in vitro and in vivo behavior. Pillai MM; Gopinathan J; Senthil Kumar R; Sathish Kumar G; Shanthakumari S; Sahanand KS; Bhattacharyya A; Selvakumar R J Biomed Mater Res A; 2018 Jun; 106(6):1722-1731. PubMed ID: 29460414 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]