These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 31546389)
1. Collagen-infilled 3D printed scaffolds loaded with miR-148b-transfected bone marrow stem cells improve calvarial bone regeneration in rats. Moncal KK; Aydin RST; Abu-Laban M; Heo DN; Rizk E; Tucker SM; Lewis GS; Hayes D; Ozbolat IT Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110128. PubMed ID: 31546389 [TBL] [Abstract][Full Text] [Related]
2. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Liao YH; Chang YH; Sung LY; Li KC; Yeh CL; Yen TC; Hwang SM; Lin KJ; Hu YC Biomaterials; 2014 Jun; 35(18):4901-10. PubMed ID: 24674465 [TBL] [Abstract][Full Text] [Related]
3. Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds. Deng Y; Bi X; Zhou H; You Z; Wang Y; Gu P; Fan X Eur Cell Mater; 2014 Jan; 27():13-24; discussion 24-5. PubMed ID: 24425157 [TBL] [Abstract][Full Text] [Related]
4. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Zhang W; Shi W; Wu S; Kuss M; Jiang X; Untrauer JB; Reid SP; Duan B Biofabrication; 2020 Jun; 12(3):035020. PubMed ID: 32369796 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds. Janmohammadi M; Doostmohammadi N; Bahraminasab M; Nourbakhsh MS; Arab S; Asgharzade S; Ghanbari A; Satari A Int J Biol Macromol; 2024 Jun; 270(Pt 1):132361. PubMed ID: 38750857 [TBL] [Abstract][Full Text] [Related]
6. 3D magnetic nanocomposite scaffolds enhanced the osteogenic capacities of rat bone mesenchymal stem cells in vitro and in a rat calvarial bone defect model by promoting cell adhesion. Han L; Guo Y; Jia L; Zhang Q; Sun L; Yang Z; Dai Y; Lou Z; Xia Y J Biomed Mater Res A; 2021 Sep; 109(9):1670-1680. PubMed ID: 33876884 [TBL] [Abstract][Full Text] [Related]
7. A novel 3D printed bioactive scaffolds with enhanced osteogenic inspired by ancient Chinese medicine HYSA for bone repair. Deng Z; Chen J; Lin B; Li J; Wang H; Wang D; Pang L; Zeng X; Wang H; Zhang Y Exp Cell Res; 2020 Sep; 394(2):112139. PubMed ID: 32562783 [TBL] [Abstract][Full Text] [Related]
8. Addition of Bone-Marrow Mesenchymal Stem Cells to 3D-Printed Alginate/Gelatin Hydrogel Containing Freeze-Dried Bone Nanoparticles Accelerates Regeneration of Critical Size Bone Defects. Bastami F; Safavi SM; Seifi S; Nadjmi N; Khojasteh A Macromol Biosci; 2024 Mar; 24(3):e2300065. PubMed ID: 37846197 [TBL] [Abstract][Full Text] [Related]
9. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167 [TBL] [Abstract][Full Text] [Related]
10. Evaluating osteogenic potential of a 3D-printed bioceramic-based scaffold for critical-sized defect treatment: an in vivo and in vitro investigation. Safiaghdam H; Baniameri S; Aminianfar H; Mohajeri SF; Dehghan MM; Tayebi L; Nokhbatolfoghahaei H; Khojasteh A In Vitro Cell Dev Biol Anim; 2024 Jun; 60(6):657-666. PubMed ID: 38743380 [TBL] [Abstract][Full Text] [Related]
11. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Chen S; Shi Y; Zhang X; Ma J Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051 [TBL] [Abstract][Full Text] [Related]
13. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Martin V; Ribeiro IA; Alves MM; Gonçalves L; Claudio RA; Grenho L; Fernandes MH; Gomes P; Santos CF; Bettencourt AF Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():15-26. PubMed ID: 31029308 [TBL] [Abstract][Full Text] [Related]
14. Reconstructing Critical-Sized Mandibular Defects in a Rabbit Model: Enhancing Angiogenesis and Facilitating Bone Regeneration via a Cell-Loaded 3D-Printed Hydrogel-Ceramic Scaffold Application. Sajad Daneshi S; Tayebi L; Talaei-Khozani T; Tavanafar S; Hadaegh AH; Rasoulianboroujeni M; Rastegari B; Asadi-Yousefabad SL; Nammian P; Zare S; Mussin NM; Kaliyev AA; Zhelisbayeva KR; Tanideh N; Tamadon A ACS Biomater Sci Eng; 2024 May; 10(5):3316-3330. PubMed ID: 38619014 [TBL] [Abstract][Full Text] [Related]
15. 3D-HA Scaffold Functionalized by Extracellular Matrix of Stem Cells Promotes Bone Repair. Chi H; Chen G; He Y; Chen G; Tu H; Liu X; Yan J; Wang X Int J Nanomedicine; 2020; 15():5825-5838. PubMed ID: 32821104 [TBL] [Abstract][Full Text] [Related]
16. Rat Calvarial Bone Regeneration by 3D-Printed β-Tricalcium Phosphate Incorporating MicroRNA-200c. Remy MT; Akkouch A; He L; Eliason S; Sweat ME; Krongbaramee T; Fei F; Qian F; Amendt BA; Song X; Hong L ACS Biomater Sci Eng; 2021 Sep; 7(9):4521-4534. PubMed ID: 34437807 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Osteogenesis and Angiogenesis of Icariin in Local Controlled Release and Systemic Delivery for Calvarial Defect in Ovariectomized Rats. Wu Y; Cao L; Xia L; Wu Q; Wang J; Wang X; Xu L; Zhou Y; Xu Y; Jiang X Sci Rep; 2017 Jul; 7(1):5077. PubMed ID: 28698566 [TBL] [Abstract][Full Text] [Related]
18. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075 [TBL] [Abstract][Full Text] [Related]
19. Developmental-like bone regeneration by human embryonic stem cell-derived mesenchymal cells. Kuhn LT; Liu Y; Boyd NL; Dennis JE; Jiang X; Xin X; Charles LF; Wang L; Aguila HL; Rowe DW; Lichtler AC; Goldberg AJ Tissue Eng Part A; 2014 Jan; 20(1-2):365-77. PubMed ID: 23952622 [TBL] [Abstract][Full Text] [Related]
20. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]