These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 31546414)
1. Surface functionalization of cuttlefish bone-derived biphasic calcium phosphate scaffolds with polymeric coatings. Neto AS; Fonseca AC; Abrantes JCC; Coelho JFJ; Ferreira JMF Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110014. PubMed ID: 31546414 [TBL] [Abstract][Full Text] [Related]
2. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
5. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
6. Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating. Kim BS; Kang HJ; Lee J J Biomed Mater Res B Appl Biomater; 2013 Oct; 101(7):1302-9. PubMed ID: 23661509 [TBL] [Abstract][Full Text] [Related]
7. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855 [TBL] [Abstract][Full Text] [Related]
8. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds. Saito E; Suarez-Gonzalez D; Murphy WL; Hollister SJ Adv Healthc Mater; 2015 Mar; 4(4):621-32. PubMed ID: 25515846 [TBL] [Abstract][Full Text] [Related]
9. Use of micro-computed tomography to nondestructively characterize biomineral coatings on solid freeform fabricated poly (L-lactic acid) and poly ((ε-caprolactone) scaffolds in vitro and in vivo. Saito E; Suarez-Gonzalez D; Rao RR; Stegemann JP; Murphy WL; Hollister SJ Tissue Eng Part C Methods; 2013 Jul; 19(7):507-17. PubMed ID: 23134479 [TBL] [Abstract][Full Text] [Related]
10. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings. Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018 [TBL] [Abstract][Full Text] [Related]
11. Development of osteogenic chitosan/alginate scaffolds reinforced with silicocarnotite containing apatitic fibers. Karimi M; Mesgar AS; Mohammadi Z Biomed Mater; 2020 Aug; 15(5):055020. PubMed ID: 32438355 [TBL] [Abstract][Full Text] [Related]
13. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
14. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007 [TBL] [Abstract][Full Text] [Related]
15. Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass Cozza N; Monte F; Bonani W; Aswath P; Motta A; Migliaresi C J Tissue Eng Regen Med; 2018 Feb; 12(2):e1131-e1142. PubMed ID: 28500666 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering. Matinfar M; Mesgar AS; Mohammadi Z Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():341-353. PubMed ID: 30948070 [TBL] [Abstract][Full Text] [Related]
17. Control of surface topography in biomimetic calcium phosphate coatings. Costa DO; Allo BA; Klassen R; Hutter JL; Dixon SJ; Rizkalla AS Langmuir; 2012 Feb; 28(8):3871-80. PubMed ID: 22242934 [TBL] [Abstract][Full Text] [Related]
18. Biomineralization of poly-l-lactide spongy bone scaffolds obtained by freeze-extraction method. Budnicka M; Szymaniak M; Kołbuk D; Ruśkowski P; Gadomska-Gajadhur A J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):868-879. PubMed ID: 31339656 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
20. Development of hydroxyapatite bone scaffold for controlled drug release via poly(epsilon-caprolactone) and hydroxyapatite hybrid coatings. Kim HW; Knowles JC; Kim HE J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):240-9. PubMed ID: 15264306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]