These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31546429)

  • 41. Effects of acid-alkali treatment on bioactivity and osteoinduction of porous titanium: An in vitro study.
    Yao YT; Liu S; Swain MV; Zhang XP; Zhao K; Jian YT
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():200-210. PubMed ID: 30423702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface modification of titanium with hydroxyapatite-heparin-BMP-2 enhances the efficacy of bone formation and osseointegration in vitro and in vivo.
    Yang DH; Lee DW; Kwon YD; Kim HJ; Chun HJ; Jang JW; Khang G
    J Tissue Eng Regen Med; 2015 Sep; 9(9):1067-77. PubMed ID: 25524250
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells.
    Nishio K; Neo M; Akiyama H; Nishiguchi S; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2000 Dec; 52(4):652-61. PubMed ID: 11033547
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quasi-biological apatite film induced by titanium in a simulated body fluid.
    Li P; Ducheyne P
    J Biomed Mater Res; 1998 Sep; 41(3):341-8. PubMed ID: 9659601
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal.
    Takadama H; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2001 May; 55(2):185-93. PubMed ID: 11255170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modification of electrochemically deposited apatite using supercritical water.
    Ban S; Hasegawa J
    Dent Mater J; 2001 Dec; 20(4):247-56. PubMed ID: 11915620
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of fluoride-ion-implanted titanium surface on the cytocompatibility in vitro and osseointegatation in vivo for dental implant applications.
    Wang XJ; Liu HY; Ren X; Sun HY; Zhu LY; Ying XX; Hu SH; Qiu ZW; Wang LP; Wang XF; Ma GW
    Colloids Surf B Biointerfaces; 2015 Dec; 136():752-60. PubMed ID: 26519937
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid.
    Takadama H; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2001 Dec; 57(3):441-8. PubMed ID: 11523039
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Positive modulation of osteogenesis on a titanium oxide surface incorporating strontium oxide: An in vitro and in vivo study.
    Chen X; Chen Y; Shen J; Xu J; Zhu L; Gu X; He F; Wang H
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():710-718. PubMed ID: 30889744
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hybrid micro/nanostructural surface offering improved stress distribution and enhanced osseointegration properties of the biomedical titanium implant.
    Hou PJ; Ou KL; Wang CC; Huang CF; Ruslin M; Sugiatno E; Yang TS; Chou HH
    J Mech Behav Biomed Mater; 2018 Mar; 79():173-180. PubMed ID: 29306080
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced Osseointegration of Hierarchically Structured Ti Implant with Electrically Bioactive SnO
    Zhou R; Han Y; Cao J; Li M; Jin G; Du Y; Luo H; Yang Y; Zhang L; Su B
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30191-30200. PubMed ID: 30130089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method.
    Ning CQ; Zhou Y
    Biomaterials; 2002 Jul; 23(14):2909-15. PubMed ID: 12069332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid.
    Wang XX; Yan W; Hayakawa S; Tsuru K; Osaka A
    Biomaterials; 2003 Nov; 24(25):4631-7. PubMed ID: 12951006
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced Osseointegration of Porous Titanium Modified with Zeolitic Imidazolate Framework-8.
    Zhang X; Chen J; Pei X; Wang J; Wan Q; Jiang S; Huang C; Pei X
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25171-25183. PubMed ID: 28696091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits.
    Le Guehennec L; Goyenvalle E; Lopez-Heredia MA; Weiss P; Amouriq Y; Layrolle P
    Clin Oral Implants Res; 2008 Nov; 19(11):1103-10. PubMed ID: 18983312
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of different post-treatments on the bioactivity of alkali-treated Ti-5Si alloy.
    Hsu HC; Wu SC; Hsu SK; Liao YH; Ho WF
    Biomed Mater Eng; 2017; 28(5):503-514. PubMed ID: 28854492
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of heat-treatment atmosphere on the bond strength of apatite layer on Ti substrate.
    Wang X; Li Y; Lin J; Hodgson PD; Wen C
    Dent Mater; 2008 Nov; 24(11):1549-55. PubMed ID: 18455227
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction of calcium and phosphate in apatite coating on titanium with serum albumin.
    Feng B; Chen J; Zhang X
    Biomaterials; 2002 Jun; 23(12):2499-507. PubMed ID: 12033597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biomechanical measurements of calcium-incorporated oxidized implants in rabbit bone: effect of calcium surface chemistry of a novel implant.
    Sul YT; Byon ES; Jeong Y
    Clin Implant Dent Relat Res; 2004; 6(2):101-10. PubMed ID: 15669710
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium alginate template-mineral substituted hydroxyapatite hydrogel coated titanium implant for tibia bone regeneration.
    Yin X; Yan L; Jun Hao D; Liu S; Yang M; He B; Liu Z
    Int J Pharm; 2020 May; 582():119303. PubMed ID: 32268183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.