These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
549 related articles for article (PubMed ID: 31546437)
1. Hybrid nanocellulose decorated with silver nanoparticles as reinforcing filler with antibacterial properties. Errokh A; Magnin A; Putaux JL; Boufi S Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110044. PubMed ID: 31546437 [TBL] [Abstract][Full Text] [Related]
2. Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications. Jatoi AW; Ogasawara H; Kim IS; Ni QQ Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110679. PubMed ID: 32204107 [TBL] [Abstract][Full Text] [Related]
3. Preparation and properties of cellulose/silver nanocomposite fibers. Li R; He M; Li T; Zhang L Carbohydr Polym; 2015 Jan; 115():269-75. PubMed ID: 25439895 [TBL] [Abstract][Full Text] [Related]
4. In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases. Moniri M; Boroumand Moghaddam A; Azizi S; Abdul Rahim R; Zuhainis SW; Navaderi M; Mohamad R Int J Nanomedicine; 2018; 13():5097-5112. PubMed ID: 30254435 [TBL] [Abstract][Full Text] [Related]
5. Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Shameli K; Ahmad MB; Yunus WM; Ibrahim NA; Rahman RA; Jokar M; Darroudi M Int J Nanomedicine; 2010 Sep; 5():573-9. PubMed ID: 20856832 [TBL] [Abstract][Full Text] [Related]
6. Cellulose hybrid nanocomposites using Napier grass fibers with in situ generated silver nanoparticles as fillers for antibacterial applications. Indira Devi MP; Nallamuthu N; Rajini N; Varada Rajulu A; Hari Ram N; Siengchin S Int J Biol Macromol; 2018 Oct; 118(Pt A):99-106. PubMed ID: 29883698 [TBL] [Abstract][Full Text] [Related]
7. Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II. Fortunati E; Luzi F; Puglia D; Terenzi A; Vercellino M; Visai L; Santulli C; Torre L; Kenny JM Carbohydr Polym; 2013 Sep; 97(2):837-48. PubMed ID: 23911522 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of multifunctional cellulose nanocrystals/poly(lactic acid) nanocomposites with silver nanoparticles by spraying method. Yu HY; Yang XY; Lu FF; Chen GY; Yao JM Carbohydr Polym; 2016 Apr; 140():209-19. PubMed ID: 26876846 [TBL] [Abstract][Full Text] [Related]
9. Anti-biofilm activity and food packaging application of room temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite. Naskar A; Khan H; Sarkar R; Kumar S; Halder D; Jana S Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():743-753. PubMed ID: 30033309 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional 3D cationic starch/nanofibrillated cellulose/silver nanoparticles nanocomposite cryogel: Synthesis, adsorption, and antibacterial characteristics. Radwan EK; El-Naggar ME; Abdel-Karim A; Wassel AR Int J Biol Macromol; 2021 Oct; 189():420-431. PubMed ID: 34425121 [TBL] [Abstract][Full Text] [Related]
11. Hybrid Silver-Containing Materials Based on Various Forms of Bacterial Cellulose: Synthesis, Structure, and Biological Activity. Vasil'kov A; Butenko I; Naumkin A; Voronova A; Golub A; Buzin M; Shtykova E; Volkov V; Sadykova V Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108827 [TBL] [Abstract][Full Text] [Related]
13. A comparative study on synthesis of AgNPs on cellulose nanofibers by thermal treatment and DMF for antibacterial activities. Jatoi AW; Kim IS; Ni QQ Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1179-1195. PubMed ID: 30813001 [TBL] [Abstract][Full Text] [Related]
14. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent. Sivaranjana P; Nagarajan ER; Rajini N; Jawaid M; Rajulu AV Int J Biol Macromol; 2017 Jun; 99():223-232. PubMed ID: 28237574 [TBL] [Abstract][Full Text] [Related]
15. Facile synthesis of Ag nanoparticles-loaded chitosan antibacterial nanocomposite and its application in polypropylene. Chen J; Fan L; Yang C; Wang S; Zhang M; Xu J; Luo S Int J Biol Macromol; 2020 Oct; 161():1286-1295. PubMed ID: 32693127 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of polyaniline/Ag-Pt nanocomposite for improved antibacterial activity. Boomi P; Prabu HG; Mathiyarasu J Colloids Surf B Biointerfaces; 2013 Mar; 103():9-14. PubMed ID: 23201713 [TBL] [Abstract][Full Text] [Related]
17. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Matai I; Sachdev A; Dubey P; Kumar SU; Bhushan B; Gopinath P Colloids Surf B Biointerfaces; 2014 Mar; 115():359-67. PubMed ID: 24412348 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities. Zhang Z; Wu Y; Wang Z; Zou X; Zhao Y; Sun L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():462-9. PubMed ID: 27612736 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial effect and toxicity of cellulose nanofibril/silver nanoparticle nanocomposites prepared by an ultraviolet irradiation method. Yu Z; Wang W; Dhital R; Kong F; Lin M; Mustapha A Colloids Surf B Biointerfaces; 2019 Aug; 180():212-220. PubMed ID: 31054461 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional cellulose based silver-functionalized ZnO nanocomposite with controlled geometry: Synthesis, characterization and properties. Fu F; Gu J; Zhang R; Xu X; Yu X; Liu L; Liu X; Zhou J; Yao J J Colloid Interface Sci; 2018 Nov; 530():433-443. PubMed ID: 29990779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]