These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 31546463)
1. Optimization of biocompatibility in a laser surface treated Mg-AZ31B alloy. Lu JZ; Joshi SS; Pantawane MV; Ho YH; Wu TC; Dahotre NB Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110028. PubMed ID: 31546463 [TBL] [Abstract][Full Text] [Related]
2. Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material. Wu TC; Ho YH; Joshi SS; Rajamure RS; Dahotre NB Lasers Med Sci; 2017 May; 32(4):797-803. PubMed ID: 28251395 [TBL] [Abstract][Full Text] [Related]
3. Laser surface modification of AZ31B Mg alloy for bio-wettability. Ho YH; Vora HD; Dahotre NB J Biomater Appl; 2015 Feb; 29(7):915-28. PubMed ID: 25201909 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical characterization and in-vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials. Ur Rahman Z; Pompa L; Haider W J Mater Sci Mater Med; 2015 Aug; 26(8):217. PubMed ID: 26216551 [TBL] [Abstract][Full Text] [Related]
5. Surface characterization and cytotoxicity response of biodegradable magnesium alloys. Pompa L; Rahman ZU; Munoz E; Haider W Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():761-768. PubMed ID: 25687006 [TBL] [Abstract][Full Text] [Related]
6. Degradation, wettability and surface characteristics of laser surface modified Mg-Zn-Gd-Nd alloy. K R R; Bontha S; M R R; Das M; Balla VK J Mater Sci Mater Med; 2020 Apr; 31(5):42. PubMed ID: 32350617 [TBL] [Abstract][Full Text] [Related]
7. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729 [TBL] [Abstract][Full Text] [Related]
9. In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Ho YH; Joshi SS; Wu TC; Hung CM; Ho NJ; Dahotre NB Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110632. PubMed ID: 32228958 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the degradation rate and biomineralization nature of antiferromagnetic Fe-20Mn alloy by groove pressing. Sahu MR; Sampath Kumar TS; Chakkingal U; Dewangan VK; Doble M J Biomed Mater Res A; 2024 Oct; 112(10):1646-1661. PubMed ID: 38560769 [TBL] [Abstract][Full Text] [Related]
12. Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites. Ratna Sunil B; Sampath Kumar TS; Chakkingal U; Nandakumar V; Doble M J Mater Sci Mater Med; 2014 Apr; 25(4):975-88. PubMed ID: 24375146 [TBL] [Abstract][Full Text] [Related]
13. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Li Z; Gu X; Lou S; Zheng Y Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191 [TBL] [Abstract][Full Text] [Related]
14. Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing. Sunil BR; Kumar AA; Sampath Kumar TS; Chakkingal U Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1607-15. PubMed ID: 23827614 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing. Ratna Sunil B; Sampath Kumar TS; Chakkingal U; Nandakumar V; Doble M; Devi Prasad V; Raghunath M Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():356-367. PubMed ID: 26652384 [TBL] [Abstract][Full Text] [Related]
16. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation. Jang Y; Tan Z; Jurey C; Xu Z; Dong Z; Collins B; Yun Y; Sankar J Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():28-40. PubMed ID: 25579893 [TBL] [Abstract][Full Text] [Related]
17. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance. Mukhametkaliyev TM; Surmeneva MA; Vladescu A; Cotrut CM; Braic M; Dinu M; Vranceanu MD; Pana I; Mueller M; Surmenev RA Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():95-103. PubMed ID: 28415551 [TBL] [Abstract][Full Text] [Related]
18. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating. Rojaee R; Fathi M; Raeissi K Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3817-25. PubMed ID: 23910282 [TBL] [Abstract][Full Text] [Related]
19. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification. Hou X; Qin H; Gao H; Mankoci S; Zhang R; Zhou X; Ren Z; Doll GL; Martini A; Sahai N; Dong Y; Ye C Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():1061-1071. PubMed ID: 28575941 [TBL] [Abstract][Full Text] [Related]
20. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure. Bornapour M; Celikin M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():16-24. PubMed ID: 25491955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]