BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31546730)

  • 1. Electron Beam Irradiation Isolates Cellulose Nanofiber from Korea "Tall Goldenrod" Invasive Alien Plant Pulp.
    Kim HG; Lee US; Kwac LK; Lee SO; Kim YS; Shin HK
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31546730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose Nanofibers Isolated from the
    Dominic C D M; Joseph R; Begum PMS; Joseph M; Padmanabhan D; Morris LA; Kumar AS; Formela K
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32260346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano.
    Karimi S; Tahir PM; Karimi A; Dufresne A; Abdulkhani A
    Carbohydr Polym; 2014 Jan; 101():878-85. PubMed ID: 24299851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Carbon Foam from Waste Artificial Marble Powder and Carboxymethyl Cellulose via Electron Beam Irradiation and Its Characterization.
    Kim HG; Kim YS; Kwac LK; Chae SH; Shin HK
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29565300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SI ATRP for the Surface Modifications of Optically Transparent Paper Films Made by TEMPO-Oxidized Cellulose Nanofibers.
    Chen JK; Huang HY; Tu CW; Lee LT; Jamnongkan T; Huang CF
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of electron beam irradiation (EBI) on structure characteristics and thermal properties of walnut protein flour.
    Zhao Y; Sun N; Li Y; Cheng S; Jiang C; Lin S
    Food Res Int; 2017 Oct; 100(Pt 1):850-857. PubMed ID: 28873758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial exchange of ozone by electron beam irradiation shows better viscosity control and less oxidation in cellulose upgrade scenarios.
    Sarosi OP; Bammer D; Fitz E; Potthast A
    Carbohydr Polym; 2021 Aug; 265():118037. PubMed ID: 33966824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications.
    Bakkari ME; Bindiganavile V; Goncalves J; Boluk Y
    Carbohydr Polym; 2019 Jan; 203():238-245. PubMed ID: 30318209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and properties of cellulose/Thespesia lampas microfiber composite films.
    B A; K OR; Feng H; A VR
    Int J Biol Macromol; 2019 Apr; 127():153-158. PubMed ID: 30639652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals.
    Mo Y; Guo R; Liu J; Lan Y; Zhang Y; Xue W; Zhang Y
    Colloids Surf B Biointerfaces; 2015 Aug; 132():177-84. PubMed ID: 26047881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers.
    Fazeli M; Keley M; Biazar E
    Int J Biol Macromol; 2018 Sep; 116():272-280. PubMed ID: 29729338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning.
    Munir MM; Iskandar F; Yun KM; Okuyama K; Abdullah M
    Nanotechnology; 2008 Apr; 19(14):145603. PubMed ID: 21817762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp.
    Li M; Wang LJ; Li D; Cheng YL; Adhikari B
    Carbohydr Polym; 2014 Feb; 102():136-43. PubMed ID: 24507265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre.
    C S JC; George N; Narayanankutty SK
    Carbohydr Polym; 2016 May; 142():158-66. PubMed ID: 26917386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and properties of cellulose/silver nanocomposite fibers.
    Li R; He M; Li T; Zhang L
    Carbohydr Polym; 2015 Jan; 115():269-75. PubMed ID: 25439895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration.
    An SJ; Lee SH; Huh JB; Jeong SI; Park JS; Gwon HJ; Kang ES; Jeong CM; Lim YM
    Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29068426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.