These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31546830)

  • 21. Measurements of the wettability of protein-covered hydroxyapatite surfaces.
    Kawasaki K; Kambara M; Matsumura H; Norde W
    Caries Res; 1999; 33(6):473-8. PubMed ID: 10529534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solution- and adsorbed-state structural ensembles predicted for the statherin-hydroxyapatite system.
    Masica DL; Gray JJ
    Biophys J; 2009 Apr; 96(8):3082-91. PubMed ID: 19383454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical study of bone sialoprotein in bone biomineralization.
    Yang Y; Mkhonto D; Cui Q; Sahai N
    Cells Tissues Organs; 2011; 194(2-4):182-7. PubMed ID: 21597272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fibrous nanocrystals of hydroxyapatite loaded with TiO(2) nanoparticles for the capture and photocatalytic decomposition of specific proteins.
    Hirakura S; Kobayashi T; Ono S; Oaki Y; Imai H
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):131-5. PubMed ID: 20444584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization.
    Raj PA; Johnsson M; Levine MJ; Nancollas GH
    J Biol Chem; 1992 Mar; 267(9):5968-76. PubMed ID: 1313424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solid-state NMR studies of biomineralization peptides and proteins.
    Roehrich A; Drobny G
    Acc Chem Res; 2013 Sep; 46(9):2136-44. PubMed ID: 23932180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.
    Kandori K; Oda S; Fukusumi M; Morisada Y
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):140-5. PubMed ID: 19515538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein adsorption characteristics of calcium hydroxyapatites modified with pyrophosphoric acids.
    Kandori K; Tsuyama S; Tanaka H; Ishikawa T
    Colloids Surf B Biointerfaces; 2007 Aug; 58(2):98-104. PubMed ID: 17399960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of a statherin peptide fragment on the surface of nanocrystallites of hydroxyapatite.
    Chen PH; Tseng YH; Mou Y; Tsai YL; Guo SM; Huang SJ; Yu SS; Chan JC
    J Am Chem Soc; 2008 Mar; 130(9):2862-8. PubMed ID: 18266360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5'-phosphate as a phosphorus source and application in drug delivery.
    Zhao XY; Zhu YJ; Qi C; Chen F; Lu BQ; Zhao J; Wu J
    Chem Asian J; 2013 Jun; 8(6):1313-20. PubMed ID: 23554329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of selectivity via nanochemistry: monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides.
    Krenkova J; Lacher NA; Svec F
    Anal Chem; 2010 Oct; 82(19):8335-41. PubMed ID: 20806887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting the Structure-Activity Relationship of Hydroxyapatite-Binding Peptides by Enhanced-Sampling Molecular Simulation.
    Zhao W; Xu Z; Cui Q; Sahai N
    Langmuir; 2016 Jul; 32(27):7009-22. PubMed ID: 27329793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of highly efficient hydroxyapatite microtubes for uranium sequestration and immobilization.
    Ma C; Peng Y; Su M; Song G; Chen D
    J Environ Manage; 2023 Oct; 344():118417. PubMed ID: 37352631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phage display for the discovery of hydroxyapatite-associated peptides.
    Jin HE; Chung WJ; Lee SW
    Methods Enzymol; 2013; 532():305-23. PubMed ID: 24188773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces: benefits and limitations.
    Richter AG; Kuzmenko I
    Langmuir; 2013 Apr; 29(17):5167-80. PubMed ID: 23586436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fibroin-like Peptides Self-Assembling on Two-Dimensional Materials as a Molecular Scaffold for Potential Biosensing.
    Li P; Sakuma K; Tsuchiya S; Sun L; Hayamizu Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20670-20677. PubMed ID: 31066544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of histatin-5 fragments on the mineralization of hydroxyapatite.
    Richardson CF; Johnsson M; Raj PA; Levine MJ; Nancollas GH
    Arch Oral Biol; 1993 Nov; 38(11):997-1002. PubMed ID: 8297263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers.
    Yu YD; Zhu YJ; Qi C; Jiang YY; Li H; Wu J
    J Colloid Interface Sci; 2017 Jun; 496():416-424. PubMed ID: 28242348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts.
    Xu Z; Liu C; Wei J; Sun J
    J Appl Toxicol; 2012 Jun; 32(6):429-35. PubMed ID: 22162110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile synthesis of hydroxyapatite nanoparticles mimicking biological apatite from eggshells for bone-tissue engineering.
    Nga NK; Thuy Chau NT; Viet PH
    Colloids Surf B Biointerfaces; 2018 Dec; 172():769-778. PubMed ID: 30266011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.