BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 31546959)

  • 21. Evaluation of combined utilization of marble dust powder and fly ash on the properties and sustainability of high-strength concrete.
    Rid ZA; Shah SNR; Memon MJ; Jhatial AA; Keerio MA; Goh WI
    Environ Sci Pollut Res Int; 2022 Apr; 29(19):28005-28019. PubMed ID: 34985632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an environmental-friendly durable self-compacting concrete.
    Tripathi D; Kumar R; Mehta PK
    Environ Sci Pollut Res Int; 2022 Aug; 29(36):54167-54180. PubMed ID: 35292899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental Prognostication of Ultra-High-Performance Lightweight Hybrid Fiber-Reinforced Concrete by Using Sintered Fly Ash Aggregate, Palm Oil Shell Aggregate, and Supplementary Cementitious Materials.
    Behera D; Liu KY; Gopalakrishnan D
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical Performance of Polymeric ARGF-Based Fly Ash-Concrete Composites: A Study for Eco-Friendly Circular Economy Application.
    Tariq H; Siddique RMA; Shah SAR; Azab M; Attiq-Ur-Rehman ; Qadeer R; Ullah MK; Iqbal F
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical Properties and Axial Compression Deformation Property of Steel Fiber Reinforced Self-Compacting Concrete Containing High Level Fly Ash.
    Liu P; Hai R; Liu J; Huang Z
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Thermal Properties of Aggregates on the Mechanical Properties of High Strength Concrete under Loading and High Temperature Conditions.
    Lee T; Jeong K; Choi H
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Crumb Rubber, Fly Ash, and Nanosilica on the Properties of Self-Compacting Concrete Using Response Surface Methodology.
    Rahim NI; Mohammed BS; Abdulkadir I; Dahim M
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental Study of the Resistance to Influence of Aggressive Liquids on Lightweight Concrete.
    Kurpińska M; Haustein E
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial lightweight aggregates as utilization for future ashes - A case study.
    Sarabèr A; Overhof R; Green T; Pels J
    Waste Manag; 2012 Jan; 32(1):144-52. PubMed ID: 21963657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete.
    Sua-iam G; Makul N
    J Environ Manage; 2013 Oct; 128():931-40. PubMed ID: 23892134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes.
    Kockal NU; Ozturan T
    J Hazard Mater; 2010 Jul; 179(1-3):954-65. PubMed ID: 20399557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimisation of Mix Proportion of 3D Printable Mortar Based on Rheological Properties and Material Strength Using Factorial Design of Experiment.
    Kaushik S; Sonebi M; Amato G; Das UK; Perrot A
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Cementitious Materials on the Engineering Properties of Lightweight Aggregate Mortars Containing Recycled Water.
    Lee JI; Bae SH; Kim JH; Choi SJ
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical Properties of Ultra-High Performance Concrete before and after Exposure to High Temperatures.
    Chen HJ; Yu YL; Tang CW
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fly Ash-Based Geopolymer Composites: A Review of the Compressive Strength and Microstructure Analysis.
    Qaidi S; Najm HM; Abed SM; Ahmed HU; Al Dughaishi H; Al Lawati J; Sabri MM; Alkhatib F; Milad A
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of Hook and Straight Steel Fibers Addition on Malaysian Fly Ash-Based Geopolymer Concrete on the Slump, Density, Water Absorption and Mechanical Properties.
    Faris MA; Abdullah MMAB; Muniandy R; Abu Hashim MF; Błoch K; Jeż B; Garus S; Palutkiewicz P; Mohd Mortar NA; Ghazali MF
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33803313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strength Characteristics and Rheological Behavior of a High Level of Fly Ash in the Production of Concrete.
    Boutkhil H; Fellak S; Aouan B; Alehyen S; Ullah R; Bari A; Fidan H; Ercisli S; Assouguem A; Taibi M
    ACS Omega; 2024 Mar; 9(12):14419-14428. PubMed ID: 38559963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Mineral Admixtures on the Mechanical and Shrinkage Performance of MgO Concrete.
    Zhou X; Mao Z; Luo P; Deng M
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental study on the compressive strength, damping and interfacial transition zone properties of modified recycled aggregate concrete.
    Lei B; Liu H; Yao Z; Tang Z
    R Soc Open Sci; 2019 Dec; 6(12):190813. PubMed ID: 31903200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Fibers on High-Temperature Mechanical Behavior and Microstructure of Reactive Powder Concrete.
    Abid M; Hou X; Zheng W; Hussain RR
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.