These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31546960)

  • 1. Polymer Fibers Covered by Soft Multilayered Films for Sensing Applications in Composite Materials.
    Nikoniuk D; Bednarska K; Sienkiewicz M; Krzesiński G; Olszyna M; Dähne L; Woliński TR; Lesiak P
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructured optical fiber sensors embedded in a laminate composite for smart material applications.
    Sonnenfeld C; Sulejmani S; Geernaert T; Eve S; Lammens N; Luyckx G; Voet E; Degrieck J; Urbanczyk W; Mergo P; Becker M; Bartelt H; Berghmans F; Thienpont H
    Sensors (Basel); 2011; 11(3):2566-79. PubMed ID: 22163755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Coating Materials Used to Improve the Performance of Optical Fiber Sensors.
    Li C; Yang W; Wang M; Yu X; Fan J; Xiong Y; Yang Y; Li L
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires.
    Srivastava S; Kotov NA
    Acc Chem Res; 2008 Dec; 41(12):1831-41. PubMed ID: 19053241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer-by-Layer Nano-assembly: A Powerful Tool for Optical Fiber Sensing Applications.
    Rivero PJ; Goicoechea J; Arregui FJ
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber optic fluorescence temperature sensors using up-conversion from rare-earth polymer composites.
    Sánchez-Escobar S; Hernández-Cordero J
    Opt Lett; 2019 Mar; 44(5):1194-1197. PubMed ID: 30821746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-sensitivity temperature sensor based on a droplet-like fiber circle.
    Xie J; Xu B; Li Y; Kang J; Shen C; Wang J; Jin Y; Liu H; Ni K; Dong X; Zhao C; Jin S
    Appl Opt; 2014 Jun; 53(18):4085-8. PubMed ID: 24979444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical sensor based on two in-series birefringent optical fibers.
    Osório JH; Cordeiro CM
    Appl Opt; 2013 Jul; 52(20):4915-21. PubMed ID: 23852207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly stretchable hybrid silica/polymer optical fiber sensors for large-strain and high-temperature application.
    Yi L; Changyuan Y
    Opt Express; 2019 Jul; 27(15):20107-20116. PubMed ID: 31510111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct inscription and evaluation of fiber Bragg gratings in carbon-coated optical sensor glass fibers for harsh environment oil and gas applications.
    Nedjalkov A; Meyer J; Waltermann C; Reimer M; Gillooly A; Angelmahr M; Schade W
    Appl Opt; 2018 Sep; 57(26):7515-7525. PubMed ID: 30461817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Methods of Enhancing the Thermal Durability of Silica Optical Fibers.
    Wysokiński K; Stańczyk T; Gibała K; Tenderenda T; Ziołowicz A; Słowikowski M; Broczkowska M; Nasiłowski T
    Materials (Basel); 2014 Oct; 7(10):6947-6964. PubMed ID: 28788224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic Synthesis of Antireflective Silica/Polymer Composite Coatings Comprising Vesicular Nanostructures.
    Lin TX; Hsu FM; Lee YL; Goseki R; Ishizone T; Jan JS
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26309-26318. PubMed ID: 27602505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer.
    Wu Q; Zhang Q; Zhao L; Li SN; Wu LB; Jiang JX; Tang LC
    J Hazard Mater; 2017 Aug; 336():222-231. PubMed ID: 28494310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and measurement of temperature sensitivity in birefringent photonic crystal holey fibers.
    Martynkien T; Szpulak M; Urbanczyk W
    Appl Opt; 2005 Dec; 44(36):7780-8. PubMed ID: 16381527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential Dual Coating with Thermosensitive Polymers for Advanced Fiber Optic Temperature Sensors.
    Salunkhe TT; Kim IT
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luminescent Polymer Composites for Optical Fiber Sensors.
    Carrillo-Betancourt RA; López-Camero AD; Hernández-Cordero J
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers.
    Al Handawi K; Vahdati N; Shiryayev O; Lawand L
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28956847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BTEX Vapor Detection with a Flexible MOF and Functional Polymer by Means of a Composite Photonic Crystal.
    Kou D; Ma W; Zhang S; Li R; Zhang Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11955-11964. PubMed ID: 32026680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing Properties of Fused Silica Single-Mode Optical Fibers Based on PPP-BOTDA in High-Temperature Fields.
    Shen J; Li T; Zhu H; Yang C; Zhang K
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors.
    Jenkins RB; Joyce P; Mechtel D
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28134815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.