These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 31547037)
1. Graphene-Based Sensing Platform for On-Chip Ochratoxin A Detection. Nekrasov N; Kireev D; Emelianov A; Bobrinetskiy I Toxins (Basel); 2019 Sep; 11(10):. PubMed ID: 31547037 [TBL] [Abstract][Full Text] [Related]
2. Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor. Wang S; Zhang Y; Pang G; Zhang Y; Guo S Anal Chem; 2017 Feb; 89(3):1704-1709. PubMed ID: 28208258 [TBL] [Abstract][Full Text] [Related]
3. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y; Zhang J; Wang X; Duan Y Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133 [TBL] [Abstract][Full Text] [Related]
4. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Sun AL; Zhang YF; Sun GP; Wang XN; Tang D Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001 [TBL] [Abstract][Full Text] [Related]
5. Amplified Fluorescent Aptasensor for Ochratoxin A Assay Based on Graphene Oxide and RecJ Zhao H; Xiong D; Yan Y; Ma C Toxins (Basel); 2020 Oct; 12(11):. PubMed ID: 33113906 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive electrochemical detection of ochratoxin A based on signal amplification by one-pot synthesized flower-like PEDOT-AuNFs supported on a graphene oxide sponge. Wang P; Wang L; Ding M; Pei M; Guo W Analyst; 2019 Oct; 144(19):5866-5874. PubMed ID: 31482879 [TBL] [Abstract][Full Text] [Related]
7. PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Sheng L; Ren J; Miao Y; Wang J; Wang E Biosens Bioelectron; 2011 Apr; 26(8):3494-9. PubMed ID: 21334186 [TBL] [Abstract][Full Text] [Related]
8. Label-Free and Highly-Sensitive Detection of Ochratoxin A Using One-Pot Synthesized Reduced Graphene Oxide/Gold Nanoparticles-Based Impedimetric Aptasensor. Alhamoud Y; Li Y; Zhou H; Al-Wazer R; Gong Y; Zhi S; Yang D Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33808613 [TBL] [Abstract][Full Text] [Related]
9. Real-time detection of ochratoxin A in wine through insight of aptamer conformation in conjunction with graphene field-effect transistor. Nekrasov N; Jaric S; Kireev D; Emelianov AV; Orlov AV; Gadjanski I; Nikitin PI; Akinwande D; Bobrinetskiy I Biosens Bioelectron; 2022 Mar; 200():113890. PubMed ID: 34953205 [TBL] [Abstract][Full Text] [Related]
10. Fluorometric aptamer-based determination of ochratoxin A based on the use of graphene oxide and RNase H-aided amplification. Ma C; Wu K; Zhao H; Liu H; Wang K; Xia K Mikrochim Acta; 2018 Jun; 185(7):347. PubMed ID: 29961128 [TBL] [Abstract][Full Text] [Related]
11. An Electrochemical Sensor Based on Structure Switching of Dithiol-modified Aptamer for Simple Detection of Ochratoxin A. Mazaafrianto DN; Ishida A; Maeki M; Tani H; Tokeshi M Anal Sci; 2019 Nov; 35(11):1221-1226. PubMed ID: 31327816 [TBL] [Abstract][Full Text] [Related]
12. SERS aptasensor for simultaneous detection of ochratoxin A and zearalenone utilizing a rigid enhanced substrate (ITO/AuNPs/GO) combined with Au@AgNPs. Xue S; Gao L; Yin L; El-Seedi HR; Abolibda TZ; Zou X; Guo Z Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():124991. PubMed ID: 39163773 [TBL] [Abstract][Full Text] [Related]
13. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA). Shao X; Zhu L; Feng Y; Zhang Y; Luo Y; Huang K; Xu W Anal Chim Acta; 2019 Dec; 1087():113-120. PubMed ID: 31585559 [TBL] [Abstract][Full Text] [Related]
14. Aptasensor for the Detection of Ochratoxin A Using Graphene Oxide and Deoxyribonuclease I-Aided Signal Amplification. Chen W; Kang Y; Qin L; Jiang J; Zhao Y; Zhao Y; Yang Z J Nanosci Nanotechnol; 2021 Sep; 21(9):4573-4578. PubMed ID: 33691835 [TBL] [Abstract][Full Text] [Related]
15. Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A. Jiang L; Qian J; Yang X; Yan Y; Liu Q; Wang K; Wang K Anal Chim Acta; 2014 Jan; 806():128-35. PubMed ID: 24331048 [TBL] [Abstract][Full Text] [Related]
16. A Label-free aptasensor based on Aptamer/NH Yang YJ; Zhou Y; Xing Y; Zhang GM; Zhang Y; Zhang CH; Lei P; Dong C; Deng X; He Y; Shuang SM Talanta; 2019 Jul; 199():310-316. PubMed ID: 30952263 [TBL] [Abstract][Full Text] [Related]
17. Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor. Wu J; Chu H; Mei Z; Deng Y; Xue F; Zheng L; Chen W Anal Chim Acta; 2012 Nov; 753():27-31. PubMed ID: 23107133 [TBL] [Abstract][Full Text] [Related]
18. Systematic truncating of aptamers to create high-performance graphene oxide (GO)-based aptasensors for the multiplex detection of mycotoxins. Wang X; Gao X; He J; Hu X; Li Y; Li X; Fan L; Yu HZ Analyst; 2019 Jun; 144(12):3826-3835. PubMed ID: 31090762 [TBL] [Abstract][Full Text] [Related]
19. Surface-enhanced Raman spectroscopy aptasensor for simultaneous determination of ochratoxin A and zearalenone using Au@Ag core-shell nanoparticles and gold nanorods. Chen R; Li S; Sun Y; Huo B; Xia Y; Qin Y; Li S; Shi B; He D; Liang J; Gao Z Mikrochim Acta; 2021 Jul; 188(8):281. PubMed ID: 34331147 [TBL] [Abstract][Full Text] [Related]
20. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Wu S; Duan N; Ma X; Xia Y; Wang H; Wang Z; Zhang Q Anal Chem; 2012 Jul; 84(14):6263-70. PubMed ID: 22816786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]