These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 31547126)
1. Age-Related Alterations Affecting the Chondrogenic Differentiation of Synovial Fluid Mesenchymal Stromal Cells in an Equine Model. Mazzotti E; Teti G; Falconi M; Chiarini F; Barboni B; Mazzotti A; Muttini A Cells; 2019 Sep; 8(10):. PubMed ID: 31547126 [TBL] [Abstract][Full Text] [Related]
2. Implication of Cellular Senescence in Osteoarthritis: A Study on Equine Synovial Fluid Mesenchymal Stromal Cells. Teti G; Mazzotti E; Gatta V; Chiarini F; Alfieri ML; Falconi M Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834521 [TBL] [Abstract][Full Text] [Related]
3. Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Scharstuhl A; Schewe B; Benz K; Gaissmaier C; Bühring HJ; Stoop R Stem Cells; 2007 Dec; 25(12):3244-51. PubMed ID: 17872501 [TBL] [Abstract][Full Text] [Related]
4. Effects of pro-inflammatory cytokines on chondrogenesis of equine mesenchymal stromal cells derived from bone marrow or synovial fluid. Zayed MN; Schumacher J; Misk N; Dhar MS Vet J; 2016 Nov; 217():26-32. PubMed ID: 27810206 [TBL] [Abstract][Full Text] [Related]
5. Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Liang Y; Idrees E; Szojka ARA; Andrews SHJ; Kunze M; Mulet-Sierra A; Jomha NM; Adesida AB Acta Biomater; 2018 Oct; 80():131-143. PubMed ID: 30267878 [TBL] [Abstract][Full Text] [Related]
6. Integrin α10β1-Selected Mesenchymal Stem Cells Mitigate the Progression of Osteoarthritis in an Equine Talar Impact Model. Delco ML; Goodale M; Talts JF; Pownder SL; Koff MF; Miller AD; Nixon B; Bonassar LJ; Lundgren-Åkerlund E; Fortier LA Am J Sports Med; 2020 Mar; 48(3):612-623. PubMed ID: 32004077 [TBL] [Abstract][Full Text] [Related]
7. Differentiation of synovial CD-105(+) human mesenchymal stem cells into chondrocyte-like cells through spheroid formation. Arufe MC; De la Fuente A; Fuentes-Boquete I; De Toro FJ; Blanco FJ J Cell Biochem; 2009 Sep; 108(1):145-55. PubMed ID: 19544399 [TBL] [Abstract][Full Text] [Related]
8. Synovial fluid progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture. Krawetz RJ; Wu YE; Martin L; Rattner JB; Matyas JR; Hart DA PLoS One; 2012; 7(8):e43616. PubMed ID: 22952721 [TBL] [Abstract][Full Text] [Related]
9. Characterization of human synovial fluid cells of 26 patients with osteoarthritis knee for cartilage repair therapy. Kurose R; Ichinohe S; Tajima G; Horiuchi S; Kurose A; Sawai T; Shimamura T Int J Rheum Dis; 2010 Feb; 13(1):68-74. PubMed ID: 20374387 [TBL] [Abstract][Full Text] [Related]
10. Respective stemness and chondrogenic potential of mesenchymal stem cells isolated from human bone marrow, synovial membrane, and synovial fluid. Neybecker P; Henrionnet C; Pape E; Grossin L; Mainard D; Galois L; Loeuille D; Gillet P; Pinzano A Stem Cell Res Ther; 2020 Jul; 11(1):316. PubMed ID: 32711576 [TBL] [Abstract][Full Text] [Related]
11. The effect of hypoxia on chondrogenesis of equine synovial membrane-derived and bone marrow-derived mesenchymal stem cells. Gale AL; Mammone RM; Dodson ME; Linardi RL; Ortved KF BMC Vet Res; 2019 Jun; 15(1):201. PubMed ID: 31200719 [TBL] [Abstract][Full Text] [Related]
12. Differences in surface marker expression and chondrogenic potential among various tissue-derived mesenchymal cells from elderly patients with osteoarthritis. Alegre-Aguarón E; Desportes P; García-Álvarez F; Castiella T; Larrad L; Martínez-Lorenzo MJ Cells Tissues Organs; 2012; 196(3):231-40. PubMed ID: 22947769 [TBL] [Abstract][Full Text] [Related]
13. Chondrogenic potential of human synovial mesenchymal stem cells in alginate. Kurth T; Hedbom E; Shintani N; Sugimoto M; Chen FH; Haspl M; Martinovic S; Hunziker EB Osteoarthritis Cartilage; 2007 Oct; 15(10):1178-89. PubMed ID: 17502159 [TBL] [Abstract][Full Text] [Related]
14. Comparative study of equine mesenchymal stem cells from healthy and injured synovial tissues: an in vitro assessment. Fülber J; Maria DA; da Silva LC; Massoco CO; Agreste F; Baccarin RY Stem Cell Res Ther; 2016 Mar; 7():35. PubMed ID: 26944403 [TBL] [Abstract][Full Text] [Related]
15. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Fahy N; de Vries-van Melle ML; Lehmann J; Wei W; Grotenhuis N; Farrell E; van der Kraan PM; Murphy JM; Bastiaansen-Jenniskens YM; van Osch GJ Osteoarthritis Cartilage; 2014 Aug; 22(8):1167-75. PubMed ID: 24911520 [TBL] [Abstract][Full Text] [Related]
17. Effects of Normal Synovial Fluid and Interferon Gamma on Chondrogenic Capability and Immunomodulatory Potential Respectively on Equine Mesenchymal Stem Cells. Zayed M; Adair S; Dhar M Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34203758 [TBL] [Abstract][Full Text] [Related]
18. Indoleamine 2, 3 Dioxygenase 1 Impairs Chondrogenic Differentiation of Mesenchymal Stem Cells in the Joint of Osteoarthritis Mice Model. Alahdal M; Huang R; Duan L; Zhiqin D; Hongwei O; Li W; Wang D Front Immunol; 2021; 12():781185. PubMed ID: 34956209 [TBL] [Abstract][Full Text] [Related]
20. Activation of the kynurenine-aryl hydrocarbon receptor axis impairs the chondrogenic and chondroprotective effects of human umbilical cord-derived mesenchymal stromal cells in osteoarthritis rats. Wang X; Zhao Y; Li S; Wang Y; Jia C; Yang X; Li S; Zhang B; Wei W; Chang Y Hum Cell; 2023 Jan; 36(1):163-177. PubMed ID: 36224488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]