These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31547133)

  • 1. Potential of Virtual Earth Observation Constellations in Archaeological Research.
    Agapiou A; Alexakis DD; Hadjimitsis DG
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Temporal Change Detection Analysis of Vertical Sprawl over Limassol City Centre and Amathus Archaeological Site in Cyprus during 2015-2020 Using the Sentinel-1 Sensor and the Google Earth Engine Platform.
    Agapiou A
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in Quantitative Earth Remote Sensing: Past, Present and Future.
    Asrar GR
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data.
    Orengo HA; Conesa FC; Garcia-Molsosa A; Lobo A; Green AS; Madella M; Petrie CA
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18240-18250. PubMed ID: 32690717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Reconfigurable Satellite Constellations Using Simulated Annealing and Genetic Algorithm.
    Paek SW; Kim S; de Weck O
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Future of Earth Observation in Hydrology.
    McCabe MF; Rodell M; Alsdorf DE; Miralles DG; Uijlenhoet R; Wagner W; Lucieer A; Houborg R; Verhoest NEC; Franz TE; Shi J; Gao H; Wood EF
    Hydrol Earth Syst Sci; 2017; 21(7):3879-3914. PubMed ID: 30233123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical-and-radar Image Fusion for Dynamic Estimation of Spin Satellites.
    Zhou Y; Zhang L; Cao Y; Huang Y
    IEEE Trans Image Process; 2019 Nov; ():. PubMed ID: 31796403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of neural network methods to the processing of earth observation satellite data.
    Loyola DG
    Neural Netw; 2006 Mar; 19(2):168-77. PubMed ID: 16530385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the value of Earth Observation for managing coral reefs: an example from the Great Barrier Reef.
    Bouma JA; Kuik O; Dekker AG
    Sci Total Environ; 2011 Oct; 409(21):4497-503. PubMed ID: 21862105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Mission Earth Observation Data Processing System.
    Mhangara P; Mapurisa W
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31487970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terra and Aqua: new data for epidemiology and public health.
    Tatem AJ; Goetz SJ; Hay SI
    Int J Appl Earth Obs Geoinf; 2004 Nov; 6(1):33-46. PubMed ID: 22545030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GEO-CEOS stage 4 validation of the Satellite Image Automatic Mapper lightweight computer program for ESA Earth observation level 2 product generation - Part 2: Validation.
    Baraldi A; Humber ML; Tiede D; Lang S
    Cogent Geosci; 2018; 4(1):1467254. PubMed ID: 30035157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Earth observation images to inform risk assessment and mapping of climate change-related infectious diseases.
    Kotchi SO; Bouchard C; Ludwig A; Rees EE; Brazeau S
    Can Commun Dis Rep; 2019 May; 45(5):133-142. PubMed ID: 31285704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Satellite imagery-based monitoring of archaeological site damage in the Syrian civil war.
    Casana J; Laugier EJ
    PLoS One; 2017; 12(11):e0188589. PubMed ID: 29190783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GEO-CEOS stage 4 validation of the Satellite Image Automatic Mapper lightweight computer program for ESA Earth observation level 2 product generation - Part 1: Theory.
    Baraldi A; Humber ML; Tiede D; Lang S
    Cogent Geosci; 2018; 4(1):1-46. PubMed ID: 30035156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion.
    Meraner A; Ebel P; Zhu XX; Schmitt M
    ISPRS J Photogramm Remote Sens; 2020 Aug; 166():333-346. PubMed ID: 32747852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observing Thermal Conditions of Historic Buildings through Earth Observation Data and Big Data Engine.
    Agapiou A; Lysandrou V
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis of cloud spectral structure characteristics based on cloud profile radar data].
    Han Y; Lü DR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):911-5. PubMed ID: 23841397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass.
    Sudmanns M; Tiede D; Augustin H; Lang S
    Int J Digit Earth; 2019 Feb; 13(7):768-784. PubMed ID: 32939222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.