These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31547155)

  • 21. Higher order acoustoelastic Lamb wave propagation in stressed plates.
    Pei N; Bond LJ
    J Acoust Soc Am; 2016 Nov; 140(5):3834. PubMed ID: 27908091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental Estimation of Lamb Wave Dispersion Curves for Adhesively Bonded Aluminum Plates, Using Two Adjacent Signals.
    Barzegar M; Pasadas DJ; Lopes Ribeiro A; Ramos HG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jun; 69(6):2143-2151. PubMed ID: 35377845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Defect Detection of Aluminium Plates Based on Near-Field Enhancement of Lamb Waves Generated Using an Electromagnetic Acoustic Tranducer.
    Zhou P; Zhang C; Xu K; Ren W
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31409058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Air-Coupled Ultrasonic Arrays for Excitation of a Slow Antisymmetric Lamb Wave.
    Kazys RJ; Vilpisauskas A; Sestoke J
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30103507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localization of notches with Lamb waves.
    Benz R; Niethammer M; Hurlebaus S; Jacobs LJ
    J Acoust Soc Am; 2003 Aug; 114(2):677-85. PubMed ID: 12942951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception.
    Sha G; Lissenden CJ
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling of lamb waves generated by integrated transducers in composite plates using a coupled finite element-normal modes expansion method.
    Moulin E; Assaad J; Delebarre C; Osmont D
    J Acoust Soc Am; 2000 Jan; 107(1):87-94. PubMed ID: 10641621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excitation and Reception of Higher-Order Guided Lamb Wave's
    Kazys RJ; Sestoke J; Mazeika L
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-contact phase coded excitation of ultrasonic Lamb wave for blind hole inspection.
    Tang J; Zhu W; Qiu X; Song A; Xiang Y; Xuan FZ
    Ultrasonics; 2022 Feb; 119():106606. PubMed ID: 34627027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lamb wave propagation in monocrystalline silicon wafers.
    Fromme P; Pizzolato M; Robyr JL; Masserey B
    J Acoust Soc Am; 2018 Jan; 143(1):287. PubMed ID: 29390792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Air-Coupled Reception of a Slow Ultrasonic A
    Kazys RJ; Vilpisauskas A
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging.
    Le Jeune L; Robert S; Lopez Villaverde E; Prada C
    Ultrasonics; 2016 Jan; 64():128-38. PubMed ID: 26323547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sparse recovery of the multimodal and dispersive characteristics of Lamb waves.
    Harley JB; Moura JM
    J Acoust Soc Am; 2013 May; 133(5):2732-45. PubMed ID: 23654381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Air-Coupled Excitation of a Slow A₀ Mode Wave in Thin Plastic Films by an Ultrasonic PMN-32%PT Array.
    Kazys RJ; Mazeika L; Sliteris R; Sestoke J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30235795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective generation of Lamb modes by a moving continuous-wave laser.
    Li Z; Lomonosov AM; Ni C; Han B; Shen Z
    Opt Lett; 2018 Jan; 43(1):78-81. PubMed ID: 29328201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Propagation and Scattering of Lamb Waves at Conical Points in Plates.
    Stobbe DM; Grünsteidl CM; Murray TW
    Sci Rep; 2019 Oct; 9(1):15216. PubMed ID: 31645576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Ultrasonic Non-Contact Air-Coupled Techniques for Characterization of Impact-Type Defects in Pultruded GFRP Composites.
    Asokkumar A; Jasiūnienė E; Raišutis R; Kažys RJ
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33668268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Importance of the near Lamb mode imaging of multilayered composite plates.
    Kundu T; Potel C; de Belleval JF
    Ultrasonics; 2001 Jun; 39(4):283-90. PubMed ID: 11432438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustoelastic Lamb wave propagation in biaxially stressed plates.
    Gandhi N; Michaels JE; Lee SJ
    J Acoust Soc Am; 2012 Sep; 132(3):1284-93. PubMed ID: 22978856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental and Computational Investigation of Guided Waves in a Human Skull.
    Sugino C; Ruzzene M; Erturk A
    Ultrasound Med Biol; 2021 Mar; 47(3):787-798. PubMed ID: 33358510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.