These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31547183)

  • 1. Melting Flow in Wire Coating of a Third Grade Fluid over a Die Using Reynolds' and Vogel's Models with Non-Linear Thermal Radiation and Joule Heating.
    Khan Z; Khan WA; Ur Rasheed H; Khan I; Nisar KS
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31547183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis.
    Khan Z; Khan MA; Siddiqui N; Ullah M; Shah Q
    PLoS One; 2018; 13(3):e0194196. PubMed ID: 29596448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Runge-Kutta 4
    Khan Z; Rasheed HU; Tlili I; Khan I; Abbas T
    Sci Rep; 2018 Sep; 8(1):14504. PubMed ID: 30266982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RK4 and HAM Solutions of Eyring-Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates.
    Khan Z; Khan W; Khan I; Alshammari N; Hamadneh NN
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface.
    Hayat T; Shafiq A; Alsaedi A
    PLoS One; 2014; 9(1):e83153. PubMed ID: 24454694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of time dependent viscosity and radiation efficacy on a non-Newtonian fluid flow.
    Hussain A; Akbar S; Sarwar L; Nadeem S; Iqbal Z
    Heliyon; 2019 Feb; 5(2):e01203. PubMed ID: 30839945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat transfer and fluid flow of blood with nanoparticles through porous vessels in a magnetic field: A quasi-one dimensional analytical approach.
    Rahbari A; Fakour M; Hamzehnezhad A; Vakilabadi MA; Ganji DD
    Math Biosci; 2017 Jan; 283():38-47. PubMed ID: 27840282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entropy optimized dissipative flow of hybrid nanofluid in the presence of non-linear thermal radiation and Joule heating.
    Xia WF; Hafeez MU; Khan MI; Shah NA; Chung JD
    Sci Rep; 2021 Aug; 11(1):16067. PubMed ID: 34373556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical and mathematical analysis of entropy generation in fluid flow subject to aluminum and ethylene glycol nanoparticles.
    Shah F; Khan MI; Hayat T; Khan MI; Alsaedi A; Khan WA
    Comput Methods Programs Biomed; 2019 Dec; 182():105057. PubMed ID: 31499421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of magnetic field and thermal radiation on squeezing flow and heat transfer of third grade nanofluid between two disks embedded in a porous medium.
    Sobamowo MG; Yinusa AA; Aladenusi ST
    Heliyon; 2020 May; 6(5):e03621. PubMed ID: 32478180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cross diffusion and heat generation on mixed convective MHD flow of Casson fluid through porous medium with non-linear thermal radiation.
    Patel HR
    Heliyon; 2019 Apr; 5(4):e01555. PubMed ID: 31183425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows.
    Chein R; Yang YC; Lin Y
    Electrophoresis; 2006 Feb; 27(3):640-9. PubMed ID: 16380954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-D electromagnetic radiative non-Newtonian nanofluid flow with Joule heating and higher-order reactions in porous materials.
    Alaidrous AA; Eid MR
    Sci Rep; 2020 Sep; 10(1):14513. PubMed ID: 32884033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation.
    Khan MI; Alsaedi A; Hayat T; Khan NB
    Comput Methods Programs Biomed; 2019 Oct; 179():104973. PubMed ID: 31443855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel.
    Hatami M; Hatami J; Ganji DD
    Comput Methods Programs Biomed; 2014 Feb; 113(2):632-41. PubMed ID: 24286727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiative Peristaltic Flow of Jeffrey Nanofluid with Slip Conditions and Joule Heating.
    Hayat T; Shafique M; Tanveer A; Alsaedi A
    PLoS One; 2016; 11(2):e0148002. PubMed ID: 26886919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiative mixed convection flow of maxwell nanofluid over a stretching cylinder with joule heating and heat source/sink effects.
    Islam S; Khan A; Kumam P; Alrabaiah H; Shah Z; Khan W; Zubair M; Jawad M
    Sci Rep; 2020 Oct; 10(1):17823. PubMed ID: 33082426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic.
    Ranjit NK; Shit GC; Tripathi D
    Microvasc Res; 2018 May; 117():74-89. PubMed ID: 29291432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of physical aspects of cubic autocatalytic chemically reactive flow of second grade nanomaterial with entropy optimization.
    Alsaadi FE; Hayat T; Khan SA; Alsaadi FE; Khan MI
    Comput Methods Programs Biomed; 2020 Jan; 183():105061. PubMed ID: 31539717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with Slip Conditions.
    Khan Z; Shah RA; Islam S; Jan B; Imran M; Tahir F
    Sci Rep; 2016 Oct; 6():34593. PubMed ID: 27708412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.