These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. FLIRT: A feature generation toolkit for wearable data. Föll S; Maritsch M; Spinola F; Mishra V; Barata F; Kowatsch T; Fleisch E; Wortmann F Comput Methods Programs Biomed; 2021 Nov; 212():106461. PubMed ID: 34736174 [TBL] [Abstract][Full Text] [Related]
3. Can We Ditch Feature Engineering? End-to-End Deep Learning for Affect Recognition from Physiological Sensor Data. Dzieżyc M; Gjoreski M; Kazienko P; Saganowski S; Gams M Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33207564 [TBL] [Abstract][Full Text] [Related]
4. The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review. Jourdan T; Debs N; Frindel C Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300546 [TBL] [Abstract][Full Text] [Related]
5. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running. Matijevich ES; Scott LR; Volgyesi P; Derry KH; Zelik KE Hum Mov Sci; 2020 Dec; 74():102690. PubMed ID: 33132194 [TBL] [Abstract][Full Text] [Related]
6. Multi-Modal Acute Stress Recognition Using Off-the-Shelf Wearable Devices. Montesinos V; Dell'Agnola F; Arza A; Aminifar A; Atienza D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2196-2201. PubMed ID: 31946337 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances. Zhang S; Li Y; Zhang S; Shahabi F; Xia S; Deng Y; Alshurafa N Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214377 [TBL] [Abstract][Full Text] [Related]
8. Using Inertial Sensors to Determine Head Motion-A Review. Ionut-Cristian S; Dan-Marius D J Imaging; 2021 Dec; 7(12):. PubMed ID: 34940732 [TBL] [Abstract][Full Text] [Related]
9. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M Int J Med Inform; 2023 May; 173():105026. PubMed ID: 36893657 [TBL] [Abstract][Full Text] [Related]
10. Large Language Models for Wearable Sensor-Based Human Activity Recognition, Health Monitoring, and Behavioral Modeling: A Survey of Early Trends, Datasets, and Challenges. Ferrara E Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124092 [TBL] [Abstract][Full Text] [Related]
11. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition. Janidarmian M; Roshan Fekr A; Radecka K; Zilic Z Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28272362 [TBL] [Abstract][Full Text] [Related]
12. Lifelog Retrieval From Daily Digital Data: Narrative Review. Ribeiro R; Trifan A; Neves AJR JMIR Mhealth Uhealth; 2022 May; 10(5):e30517. PubMed ID: 35499858 [TBL] [Abstract][Full Text] [Related]
13. Wearables and Machine Learning for Improving Runners' Motivation from an Affective Perspective. Baldassarri S; García de Quirós J; Beltrán JR; Álvarez P Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772647 [TBL] [Abstract][Full Text] [Related]
14. A Survey on Wearable Sensors for Mental Health Monitoring. Gomes N; Pato M; Lourenço AR; Datia N Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772370 [TBL] [Abstract][Full Text] [Related]
15. Multichannel ECG recording from waist using textile sensors. Alizadeh Meghrazi M; Tian Y; Mahnam A; Bhattachan P; Eskandarian L; Taghizadeh Kakhki S; Popovic MR; Lankarany M Biomed Eng Online; 2020 Jun; 19(1):48. PubMed ID: 32546233 [TBL] [Abstract][Full Text] [Related]
16. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
17. Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms. Brothers MC; DeBrosse M; Grigsby CC; Naik RR; Hussain SM; Heikenfeld J; Kim SS Acc Chem Res; 2019 Feb; 52(2):297-306. PubMed ID: 30688433 [TBL] [Abstract][Full Text] [Related]
18. Stress Detection Through Wrist-Based Electrodermal Activity Monitoring and Machine Learning. Zhu L; Spachos P; Ng PC; Yu Y; Wang Y; Plataniotis K; Hatzinakos D IEEE J Biomed Health Inform; 2023 May; 27(5):2155-2165. PubMed ID: 37022004 [TBL] [Abstract][Full Text] [Related]
19. Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk. Kańtoch E Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249987 [TBL] [Abstract][Full Text] [Related]
20. Wearable Sensors Reveal Menses-Driven Changes in Physiology and Enable Prediction of the Fertile Window: Observational Study. Goodale BM; Shilaih M; Falco L; Dammeier F; Hamvas G; Leeners B J Med Internet Res; 2019 Apr; 21(4):e13404. PubMed ID: 30998226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]