These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 31547342)

  • 41. Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network.
    Zhu L; Huang L; Fan L; Huang J; Huang F; Chen J; Zhang Z; Wang Y
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32178235
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving GIS-based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning.
    Lai JS; Tsai F
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31461983
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of landslide susceptibility with Analytic Hierarchy Process (AHP) and the role of forest ecosystem services on landslide susceptibility.
    Aksoy H
    Environ Monit Assess; 2023 Nov; 195(12):1525. PubMed ID: 37994954
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Event-based landslide susceptibility models in Shihmen watershed, Taiwan: accounting for the characteristics of rainfall events.
    Wu CY; Lin SY
    Environ Monit Assess; 2022 May; 194(6):405. PubMed ID: 35522350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning.
    Dou J; Yunus AP; Merghadi A; Shirzadi A; Nguyen H; Hussain Y; Avtar R; Chen Y; Pham BT; Yamagishi H
    Sci Total Environ; 2020 Jun; 720():137320. PubMed ID: 32325551
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling.
    Zhang T; Han L; Chen W; Shahabi H
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266608
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Future Forest Cover Change Scenarios with Implications for Landslide Risk: An Example from Buzau Subcarpathians, Romania.
    Malek Ž; Boerboom L; Glade T
    Environ Manage; 2015 Nov; 56(5):1228-43. PubMed ID: 26122632
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A heuristic approach to global landslide susceptibility mapping.
    Stanley T; Kirschbaum DB
    Nat Hazards (Dordr); 2017 May; 87(1):145-164. PubMed ID: 33867675
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SBAS-InSAR based validated landslide susceptibility mapping along the Karakoram Highway: a case study of Gilgit-Baltistan, Pakistan.
    Kulsoom I; Hua W; Hussain S; Chen Q; Khan G; Shihao D
    Sci Rep; 2023 Feb; 13(1):3344. PubMed ID: 36849465
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study.
    Eker R; Aydın A; Hübl J
    Environ Monit Assess; 2017 Dec; 190(1):28. PubMed ID: 29256067
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identifying the essential influencing factors of landslide susceptibility models based on hybrid-optimized machine learning with different grid resolutions: a case of Sino-Pakistani Karakorum Highway.
    Wu J; Zhang Y; Yang L; Zhang Y; Lei J; Zhi M; Ma G
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):100675-100700. PubMed ID: 37639095
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep learning-based landslide susceptibility mapping.
    Azarafza M; Azarafza M; Akgün H; Atkinson PM; Derakhshani R
    Sci Rep; 2021 Dec; 11(1):24112. PubMed ID: 34916586
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel Entropy and Rotation Forest-Based Credal Decision Tree Classifier for Landslide Susceptibility Modeling.
    He Q; Xu Z; Li S; Li R; Zhang S; Wang N; Pham BT; Chen W
    Entropy (Basel); 2019 Jan; 21(2):. PubMed ID: 33266822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques.
    Chang KT; Merghadi A; Yunus AP; Pham BT; Dou J
    Sci Rep; 2019 Aug; 9(1):12296. PubMed ID: 31444375
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Landslides susceptibility change over time according to terrain conditions in a mountain area of the tropic region.
    Pineda MC; Viloria J; Martínez-Casasnovas JA
    Environ Monit Assess; 2016 Apr; 188(4):255. PubMed ID: 27358998
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A hybrid machine learning model for landslide-oriented risk assessment of long-distance pipelines.
    Wen H; Liu L; Zhang J; Hu J; Huang X
    J Environ Manage; 2023 Sep; 342():118177. PubMed ID: 37210819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology.
    Zhao F; Meng X; Zhang Y; Chen G; Su X; Yue D
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31207868
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigating the dynamic nature of landslide susceptibility in the Indian Himalayan region.
    Sharma A; Sandhu HAS
    Environ Monit Assess; 2024 Feb; 196(3):257. PubMed ID: 38349601
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial prediction of landslide susceptibility in parts of Garhwal Himalaya, India, using the weight of evidence modelling.
    Guri PK; Ray PK; Patel RC
    Environ Monit Assess; 2015 Jun; 187(6):324. PubMed ID: 25944750
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparative study of heterogeneous and homogeneous ensemble approaches for landslide susceptibility assessment in the Djebahia region, Algeria.
    Matougui Z; Djerbal L; Bahar R
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):40554-40580. PubMed ID: 36892699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.