These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 31547342)

  • 61. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis.
    Feizizadeh B; Jankowski P; Blaschke T
    Comput Geosci; 2014 Mar; 64():81-95. PubMed ID: 25843987
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Measuring landslide vulnerability status of Chukha, Bhutan using deep learning algorithms.
    Saha S; Sarkar R; Roy J; Hembram TK; Acharya S; Thapa G; Drukpa D
    Sci Rep; 2021 Aug; 11(1):16374. PubMed ID: 34385532
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Landslide Susceptibility Evaluation of Machine Learning Based on Information Volume and Frequency Ratio: A Case Study of Weixin County, China.
    He W; Chen G; Zhao J; Lin Y; Qin B; Yao W; Cao Q
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904752
    [TBL] [Abstract][Full Text] [Related]  

  • 64. GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria.
    Ozioko OH; Igwe O
    Environ Monit Assess; 2020 Jan; 192(2):119. PubMed ID: 31950278
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hybrid machine learning approach for landslide prediction, Uttarakhand, India.
    Kainthura P; Sharma N
    Sci Rep; 2022 Nov; 12(1):20101. PubMed ID: 36418362
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Landslide susceptibility mapping in an area of underground mining using the multicriteria decision analysis method.
    Arca D; Kutoğlu HŞ; Becek K
    Environ Monit Assess; 2018 Nov; 190(12):725. PubMed ID: 30430322
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Influence of Different Knowledge-Driven Methods on Landslide Susceptibility Mapping: A Case Study in the Changbai Mountain Area, Northeast China.
    Ma Z; Qin S; Cao C; Lv J; Li G; Qiao S; Hu X
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267086
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features.
    Luo X; Lin F; Chen Y; Zhu S; Xu Z; Huo Z; Yu M; Peng J
    Sci Rep; 2019 Oct; 9(1):15369. PubMed ID: 31653958
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran.
    Ghasemian B; Shahabi H; Shirzadi A; Al-Ansari N; Jaafari A; Kress VR; Geertsema M; Renoud S; Ahmad A
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214473
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Geoinformation-based landslide susceptibility mapping in subtropical area.
    Zhou X; Wu W; Qin Y; Fu X
    Sci Rep; 2021 Dec; 11(1):24325. PubMed ID: 34934113
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Novel Swarm Intelligence-Harris Hawks Optimization for Spatial Assessment of Landslide Susceptibility.
    Bui DT; Moayedi H; Kalantar B; Osouli A; Pradhan B; Nguyen H; Rashid ASA
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426552
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An objective absence data sampling method for landslide susceptibility mapping.
    Rabby YW; Li Y; Hilafu H
    Sci Rep; 2023 Jan; 13(1):1740. PubMed ID: 36720965
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Landslide Susceptibility Assessment Using an AutoML Framework.
    Bruzón AG; Arrogante-Funes P; Arrogante-Funes F; Martín-González F; Novillo CJ; Fernández RR; Vázquez-Jiménez R; Alarcón-Paredes A; Alonso-Silverio GA; Cantu-Ramirez CA; Ramos-Bernal RN
    Int J Environ Res Public Health; 2021 Oct; 18(20):. PubMed ID: 34682717
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility.
    Eskandari M; Homaee M; Falamaki A
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):12423-34. PubMed ID: 26983913
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Prediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation method.
    Saha S; Arabameri A; Saha A; Blaschke T; Ngo PTT; Nhu VH; Band SS
    Sci Total Environ; 2021 Apr; 764():142928. PubMed ID: 33127137
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms.
    He Q; Shahabi H; Shirzadi A; Li S; Chen W; Wang N; Chai H; Bian H; Ma J; Chen Y; Wang X; Chapi K; Ahmad BB
    Sci Total Environ; 2019 May; 663():1-15. PubMed ID: 30708212
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Investigation of landslide detection using radial basis functions: a case study of the Taşkent landslide, Turkey.
    Zeybek M; Şanlıoğlu İ
    Environ Monit Assess; 2020 Mar; 192(4):230. PubMed ID: 32166522
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China.
    Wang Y; Fang Z; Hong H
    Sci Total Environ; 2019 May; 666():975-993. PubMed ID: 30970504
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A review on landslide susceptibility mapping research in Bangladesh.
    Chowdhury MS
    Heliyon; 2023 Jul; 9(7):e17972. PubMed ID: 37519718
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A python system for regional landslide susceptibility assessment by integrating machine learning models and its application.
    Guo Z; Guo F; Zhang Y; He J; Li G; Yang Y; Zhang X
    Heliyon; 2023 Nov; 9(11):e21542. PubMed ID: 38027891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.