These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31547372)

  • 1. Assessment of the Steering Precision of a Hydrographic Unmanned Surface Vessel (USV) along Sounding Profiles Using a Low-Cost Multi-Global Navigation Satellite System (GNSS) Receiver Supported Autopilot.
    Specht M; Specht C; Lasota H; Cywiński P
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing and Analysis of Selected Navigation Parameters of the GNSS/INS System for USV Path Localization during Inland Hydrographic Surveys.
    Specht M
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coastal Bathymetric Sounding in Very Shallow Water Using USV: Study of Public Beach in Gdynia, Poland.
    Makar A
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of USV's Direction Using Satellite and Fluxgate Compasses and GNSS-RTK.
    Makar A
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Five-State Extended Kalman Filter for Estimation of Speed over Ground (SOG), Course over Ground (COG) and Course Rate of Unmanned Surface Vehicles (USVs): Experimental Results.
    Fossen S; Fossen TI
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of Trajectory Tracking Based on Nonlinear Guidance Logic for Hydrographic Unmanned Surface Vessels.
    Stateczny A; Burdziakowski P; Najdecka K; Domagalska-Stateczna B
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Methods for Determining Shallow Waterbody Depths Based on Images Taken by Unmanned Aerial Vehicles.
    Specht M; Wiśniewska M; Stateczny A; Specht C; Szostak B; Lewicka O; Stateczny M; Widźgowski S; Halicki A
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems.
    Vetrella AR; Fasano G; Accardo D; Moccia A
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Good Is a Tactical-Grade GNSS + INS (MEMS and FOG) in a 20-m Bathymetric Survey?
    Oguntuase JO; Hiroji A; Komolafe P
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor.
    Kikutis R; Stankūnas J; Rudinskas D; Masiulionis T
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28956839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Cost GNSS-R Altimetry on a UAV for Water-Level Measurements at Arbitrary Times and Locations.
    Ichikawa K; Ebinuma T; Konda M; Yufu K
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30813630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the Accuracy of Determining the Angular Position of the Unmanned Bathymetric Surveying Vehicle Based on the Sea Horizon Image.
    Naus K; Marchel Ł; Szymak P; Nowak A
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31731532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Test on the Potential of a Low Cost Unmanned Aerial Vehicle RTK/PPK Solution for Precision Positioning.
    Famiglietti NA; Cecere G; Grasso C; Memmolo A; Vicari A
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the vertical accuracy of satellite-based correction service and the PPK GNSS method for obtaining sensor positions on a multibeam bathymetric survey.
    de Andrade Neto WP; Paz IDSR; Oliveira RAACE; De Paulo MCM
    Sci Rep; 2024 May; 14(1):11104. PubMed ID: 38750244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using UAV Photogrammetry to Analyse Changes in the Coastal Zone Based on the Sopot Tombolo (Salient) Measurement Project.
    Burdziakowski P; Specht C; Dabrowski PS; Specht M; Lewicka O; Makar A
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Experiments of a Water Color Remote Sensing-Oriented Unmanned Surface Vehicle.
    Li Y; Tian L; Li W; Li J; Wei A; Li S; Tong R
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. INS/GNSS Tightly-Coupled Integration Using Quaternion-Based AUPF for USV.
    Xia G; Wang G
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27490551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prototyping a GNSS-Based Passive Radar for UAVs: An Instrument to Classify the Water Content Feature of Lands.
    Gamba MT; Marucco G; Pini M; Ugazio S; Falletti E; Lo Presti L
    Sensors (Basel); 2015 Nov; 15(11):28287-313. PubMed ID: 26569242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation and Analysis of Tightly Coupled Global Navigation Satellite System Precise Point Positioning/Inertial Navigation System (GNSS PPP/INS) with Insufficient Satellites for Land Vehicle Navigation.
    Liu Y; Liu F; Gao Y; Zhao L
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.