These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 31547476)

  • 41. In vitro cytochrome P450 monooxygenase and prostaglandin H-synthase mediated aflatoxin B1 biotransformation in guinea pig tissues: effects of beta-naphthoflavone treatment.
    Liu L; Nakatsu K; Massey TE
    Arch Toxicol; 1993; 67(6):379-85. PubMed ID: 8215906
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular cloning and expression of a novel cytochrome p450 from turkey liver with aflatoxin b1 oxidizing activity.
    Yip SS; Coulombe RA
    Chem Res Toxicol; 2006 Jan; 19(1):30-7. PubMed ID: 16411653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro and in vivo temperature modulation of hepatic metabolism and DNA adduction of aflatoxin B1 in rainbow trout.
    Carpenter HM; Zhang Q; el Zahr C; Selivonchick DP; Brock DE; Curtis LR
    J Biochem Toxicol; 1995 Feb; 10(1):1-10. PubMed ID: 7595926
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Process efficiency and ventilation requirement in black soldier fly larvae composting of substrates with high water content.
    Lalander C; Ermolaev E; Wiklicky V; Vinnerås B
    Sci Total Environ; 2020 Aug; 729():138968. PubMed ID: 32498170
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aflatoxin B1 detoxification by CYP321A1 in Helicoverpa zea.
    Niu G; Wen Z; Rupasinghe SG; Zeng RS; Berenbaum MR; Schuler MA
    Arch Insect Biochem Physiol; 2008 Sep; 69(1):32-45. PubMed ID: 18615618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production.
    Li Q; Zheng L; Qiu N; Cai H; Tomberlin JK; Yu Z
    Waste Manag; 2011 Jun; 31(6):1316-20. PubMed ID: 21367596
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The kinetics of aflatoxin B1 oxidation by human cDNA-expressed and human liver microsomal cytochromes P450 1A2 and 3A4.
    Gallagher EP; Kunze KL; Stapleton PL; Eaton DL
    Toxicol Appl Pharmacol; 1996 Dec; 141(2):595-606. PubMed ID: 8975785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transformation of pig manure by passage through the gut of black soldier fly larvae (Hermetia illucens): Metal speciation, potential pathogens and metal-related functional profiling.
    Wu N; Wang X; Yan Z; Xu X; Xie S; Liang J
    Ecotoxicol Environ Saf; 2021 Mar; 211():111925. PubMed ID: 33465627
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of aflatoxin B1 with cytochrome P450 2A5 and its mutants: correlation with metabolic activation and toxicity.
    Pelkonen P; Lang MA; Negishi M; Wild CP; Juvonen RO
    Chem Res Toxicol; 1997 Jan; 10(1):85-90. PubMed ID: 9074807
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Process efficiency in relation to enzyme pre-treatment duration in black soldier fly larvae composting.
    Lindberg L; Vinnerås B; Lalander C
    Waste Manag; 2022 Jan; 137():121-127. PubMed ID: 34752945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Black soldier fly larvae (BSFL) and their affinity for organic waste processing.
    Siddiqui SA; Ristow B; Rahayu T; Putra NS; Widya Yuwono N; Nisa' K; Mategeko B; Smetana S; Saki M; Nawaz A; Nagdalian A
    Waste Manag; 2022 Mar; 140():1-13. PubMed ID: 35030456
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A sustainable and economic strategy to reduce risk antibiotic resistance genes during poultry manure bioconversion by black soldier fly Hermetia illucens larvae: Larval density adjustment.
    Niu SH; Liu S; Deng WK; Wu RT; Cai YF; Liao XD; Xing SC
    Ecotoxicol Environ Saf; 2022 Mar; 232():113294. PubMed ID: 35152113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Black soldier fly (Hermetia illucens) larvae as potential feedstock for the biodiesel production: Recent advances and challenges.
    Mohan K; Sathishkumar P; Rajan DK; Rajarajeswaran J; Ganesan AR
    Sci Total Environ; 2023 Feb; 859(Pt 1):160235. PubMed ID: 36402342
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enrichment and speciation changes of Cu and Cd in black soldier fly (Hermetia illucens) larval compost and their effects on larval growth performance.
    Deng B; Wang G; Yuan Q; Zhu J; Xu C; Zhang X; Wang P
    Sci Total Environ; 2022 Nov; 845():157299. PubMed ID: 35842144
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions.
    Beskin KV; Holcomb CD; Cammack JA; Crippen TL; Knap AH; Sweet ST; Tomberlin JK
    Waste Manag; 2018 Apr; 74():213-220. PubMed ID: 29397276
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Influence of Non-Optimal Rearing Conditions and Substrates on the Performance of the Black Soldier Fly (
    Ribeiro N; Costa R; Ameixa OMCC
    Insects; 2022 Jul; 13(7):. PubMed ID: 35886815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fatty acid composition of black soldier fly larvae (Hermetia illucens) - Possibilities and limitations for modification through diet.
    Ewald N; Vidakovic A; Langeland M; Kiessling A; Sampels S; Lalander C
    Waste Manag; 2020 Feb; 102():40-47. PubMed ID: 31655329
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Pei Y; Zhao S; Chen X; Zhang J; Ni H; Sun M; Lin H; Liu X; Chen H; Yang S
    Front Nutr; 2022; 9():880488. PubMed ID: 35662952
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of three major nutrient contents, compost thickness and treatment time on larval weight, process performance and residue component in black soldier fly larvae (Hermetia illucens) composting.
    Deng B; Zhu J; Wang G; Xu C; Zhang X; Wang P; Yuan Q
    J Environ Manage; 2022 Apr; 307():114610. PubMed ID: 35093757
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of in vitro aflatoxin B1-DNA binding in rainbow trout by CYP1A inhibitors: alpha-naphthoflavone, beta-naphthoflavone and trout CYP1A1 peptide antibody.
    Takahashi N; Miranda CL; Henderson MC; Buhler DR; Williams DE; Bailey GS
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1995 Mar; 110(3):273-80. PubMed ID: 7599976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.