These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 31547488)
1. Directed Evolution of Yoav S; Stern J; Salama-Alber O; Frolow F; Anbar M; Karpol A; Hadar Y; Morag E; Bayer EA Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31547488 [TBL] [Abstract][Full Text] [Related]
2. Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Gefen G; Anbar M; Morag E; Lamed R; Bayer EA Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10298-303. PubMed ID: 22689961 [TBL] [Abstract][Full Text] [Related]
3. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis. Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047 [TBL] [Abstract][Full Text] [Related]
4. Development of bi-functional chimeric enzyme (CtGH1-L1-CtGH5-F194A) from endoglucanase (CtGH5) mutant F194A and β-1,4-glucosidase (CtGH1) from Clostridium thermocellum with enhanced activity and structural integrity. Nath P; Dhillon A; Kumar K; Sharma K; Jamaldheen SB; Moholkar VS; Goyal A Bioresour Technol; 2019 Jun; 282():494-501. PubMed ID: 30897487 [TBL] [Abstract][Full Text] [Related]
5. Biological cellulose saccharification using a coculture of Clostridium thermocellum and Thermobrachium celere strain A9. Nhim S; Waeonukul R; Uke A; Baramee S; Ratanakhanokchai K; Tachaapaikoon C; Pason P; Liu YJ; Kosugi A Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):2133-2145. PubMed ID: 35157106 [TBL] [Abstract][Full Text] [Related]
6. Fast identification of thermostable beta-glucosidase mutants on cellobiose by a novel combinatorial selection/screening approach. Liu W; Hong J; Bevan DR; Zhang YH Biotechnol Bioeng; 2009 Aug; 103(6):1087-94. PubMed ID: 19388085 [TBL] [Abstract][Full Text] [Related]
7. Construction and characterization of different fusion proteins between cellulases and β-glucosidase to improve glucose production and thermostability. Lee HL; Chang CK; Teng KH; Liang PH Bioresour Technol; 2011 Feb; 102(4):3973-6. PubMed ID: 21169014 [TBL] [Abstract][Full Text] [Related]
8. Addition of cloned beta-glucosidase enhances the degradation of crystalline cellulose by the Clostridium thermocellum cellulose complex. Kadam SK; Demain AL Biochem Biophys Res Commun; 1989 Jun; 161(2):706-11. PubMed ID: 2500123 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the Thermostability of Highly Active and Glucose-Tolerant β-Glucosidase Ks5A7 by Directed Evolution for Good Performance of Three Properties. Cao L; Li S; Huang X; Qin Z; Kong W; Xie W; Liu Y J Agric Food Chem; 2018 Dec; 66(50):13228-13235. PubMed ID: 30488698 [TBL] [Abstract][Full Text] [Related]
10. Soluble Production, Characterization, and Structural Aesthetics of an Industrially Important Thermostable Ahmed SS; Akhter M; Sajjad M; Gul R; Khurshid S Biomed Res Int; 2019; 2019():9308593. PubMed ID: 31828148 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous Enhancement of Thermostability and Catalytic Activity of a Metagenome-Derived β-Glucosidase Using Directed Evolution for the Biosynthesis of Butyl Glucoside. Yin B; Hui Q; Kashif M; Yu R; Chen S; Ou Q; Wu B; Jiang C Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31835569 [TBL] [Abstract][Full Text] [Related]
12. Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Anbar M; Gul O; Lamed R; Sezerman UO; Bayer EA Appl Environ Microbiol; 2012 May; 78(9):3458-64. PubMed ID: 22389377 [TBL] [Abstract][Full Text] [Related]
13. Increased expression of β-glucosidase A in Clostridium thermocellum 27405 significantly increases cellulase activity. Maki ML; Armstrong L; Leung KT; Qin W Bioengineered; 2013; 4(1):15-20. PubMed ID: 22922214 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of the thermostability and activity of mesophilic Clostridium cellulovorans EngD by in vitro DNA recombination with Clostridium thermocellum CelE. Lee CY; Yu KO; Kim SW; Han SO J Biosci Bioeng; 2010 Apr; 109(4):331-6. PubMed ID: 20226372 [TBL] [Abstract][Full Text] [Related]
15. Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase. Ye X; Zhang C; Zhang YH Mol Biosyst; 2012 Jun; 8(6):1815-23. PubMed ID: 22511238 [TBL] [Abstract][Full Text] [Related]
16. CenC, a multidomain thermostable GH9 processive endoglucanase from Clostridium thermocellum: cloning, characterization and saccharification studies. Haq Iu; Akram F; Khan MA; Hussain Z; Nawaz A; Iqbal K; Shah AJ World J Microbiol Biotechnol; 2015 Nov; 31(11):1699-710. PubMed ID: 26250549 [TBL] [Abstract][Full Text] [Related]
17. Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase. Waeonukul R; Kosugi A; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Prawitwong P; Deng L; Saito M; Mori Y Bioresour Technol; 2012 Mar; 107():352-7. PubMed ID: 22257861 [TBL] [Abstract][Full Text] [Related]
18. Improving the cellobiose-hydrolysis activity and glucose-tolerance of a thermostable β-glucosidase through rational design. Liu X; Cao L; Zeng J; Liu Y; Xie W Int J Biol Macromol; 2019 Sep; 136():1052-1059. PubMed ID: 31199970 [TBL] [Abstract][Full Text] [Related]