BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 31547520)

  • 21. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
    Hsieh K; Ferguson BS; Eisenstein M; Plaxco KW; Soh HT
    Acc Chem Res; 2015 Apr; 48(4):911-20. PubMed ID: 25785632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A polymer microfluidic chip for quantitative detection of multiple water- and foodborne pathogens using real-time fluorogenic loop-mediated isothermal amplification.
    Tourlousse DM; Ahmad F; Stedtfeld RD; Seyrig G; Tiedje JM; Hashsham SA
    Biomed Microdevices; 2012 Aug; 14(4):769-78. PubMed ID: 22566273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid and Quantitative Detection of Vibrio parahemolyticus by the Mixed-Dye-Based Loop-Mediated Isothermal Amplification Assay on a Self-Priming Compartmentalization Microfluidic Chip.
    Pang B; Ding X; Wang G; Zhao C; Xu Y; Fu K; Sun J; Song X; Wu W; Liu Y; Song Q; Hu J; Li J; Mu Y
    J Agric Food Chem; 2017 Dec; 65(51):11312-11319. PubMed ID: 29198118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A single cell droplet microfluidic system for quantitative determination of food-borne pathogens.
    An X; Zuo P; Ye BC
    Talanta; 2020 Mar; 209():120571. PubMed ID: 31892085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lab-on-a-chip pathogen sensors for food safety.
    Yoon JY; Kim B
    Sensors (Basel); 2012; 12(8):10713-41. PubMed ID: 23112625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loop-mediated isothermal amplification technique: principle, development and wide application in food safety.
    Huang T; Li L; Liu X; Chen Q; Fang X; Kong J; Draz MS; Cao H
    Anal Methods; 2020 Dec; 12(46):5551-5561. PubMed ID: 33216073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Hyperspectral Imaging as a Nondestructive Technique for Foodborne Pathogen Detection and Characterization.
    Bonah E; Huang X; Aheto JH; Osae R
    Foodborne Pathog Dis; 2019 Oct; 16(10):712-722. PubMed ID: 31305129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ensuring food safety: Microfluidic-based approaches for the detection of food contaminants.
    Kasputis T; Hosmer KE; He Y; Chen J
    Anal Sci Adv; 2024 Jun; 5(5-6):e2400003. PubMed ID: 38948318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges.
    Wang B; Wang H; Lu X; Zheng X; Yang Z
    Foods; 2023 Jul; 12(14):. PubMed ID: 37509887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection.
    Oh SJ; Park BH; Jung JH; Choi G; Lee DC; Kim DH; Seo TS
    Biosens Bioelectron; 2016 Jan; 75():293-300. PubMed ID: 26322592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals.
    Zhou QJ; Wang L; Chen J; Wang RN; Shi YH; Li CH; Zhang DM; Yan XJ; Zhang YJ
    J Microbiol Methods; 2014 Sep; 104():26-35. PubMed ID: 24954661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic Sampling and Biosensing Systems for Foodborne
    Wang B; Park B
    Foodborne Pathog Dis; 2022 Jun; 19(6):359-375. PubMed ID: 35713922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of ESKAPE Bacterial Pathogens at the Point of Care Using Isothermal DNA-Based Assays in a Portable Degas-Actuated Microfluidic Diagnostic Assay Platform.
    Renner LD; Zan J; Hu LI; Martinez M; Resto PJ; Siegel AC; Torres C; Hall SB; Slezak TR; Nguyen TH; Weibel DB
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27986722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid On-Site Detection and Quantification of Foodborne Pathogens Using Microfluidic Devices.
    Yamaguchi N
    Methods Mol Biol; 2019; 1918():57-66. PubMed ID: 30580399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device.
    Oh SJ; Park BH; Choi G; Seo JH; Jung JH; Choi JS; Kim do H; Seo TS
    Lab Chip; 2016 May; 16(10):1917-26. PubMed ID: 27112702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PCR Mediated Nucleic Acid Molecular Recognition Technology for Detection of Viable and Dead Foodborne Pathogens.
    Chen M; Lan X; Zhu L; Ru P; Xu W; Liu H
    Foods; 2022 Sep; 11(17):. PubMed ID: 36076861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Methods for Identification and Quantification of Foodborne Pathogens.
    Zhang M; Wu J; Shi Z; Cao A; Fang W; Yan D; Wang Q; Li Y
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfluidic system integrated with buried optical fibers for detection of Phalaenopsis orchid pathogens.
    Lin CL; Chang WH; Wang CH; Lee CH; Chen TY; Jan FJ; Lee GB
    Biosens Bioelectron; 2015 Jan; 63():572-579. PubMed ID: 25168766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Progress in Spectroscopic Methods for the Detection of Foodborne Pathogenic Bacteria.
    Hussain M; Zou J; Zhang H; Zhang R; Chen Z; Tang Y
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges.
    Umesha S; Manukumar HM
    Crit Rev Food Sci Nutr; 2018 Jan; 58(1):84-104. PubMed ID: 26745757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.