BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 31547520)

  • 41. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review.
    Mi F; Guan M; Hu C; Peng F; Sun S; Wang X
    Analyst; 2021 Jan; 146(2):429-443. PubMed ID: 33231246
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrochemical Methodologies for the Detection of Pathogens.
    Amiri M; Bezaatpour A; Jafari H; Boukherroub R; Szunerits S
    ACS Sens; 2018 Jun; 3(6):1069-1086. PubMed ID: 29756447
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An overview of foodborne pathogen detection: in the perspective of biosensors.
    Velusamy V; Arshak K; Korostynska O; Oliwa K; Adley C
    Biotechnol Adv; 2010; 28(2):232-54. PubMed ID: 20006978
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Concanavalin A-assisted multiplex digital PCR assay for rapid capture and accurate quantification detection of foodborne pathogens.
    Xia L; Gui Y; Yin R; Li N; Yue M; Mu Y
    Talanta; 2024 Jun; 277():126351. PubMed ID: 38850802
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety.
    Mangal M; Bansal S; Sharma SK; Gupta RK
    Crit Rev Food Sci Nutr; 2016 Jul; 56(9):1568-84. PubMed ID: 25830555
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidic Colorimetric Biosensors Based on MnO
    Xue L; Jin N; Guo R; Wang S; Qi W; Liu Y; Li Y; Lin J
    ACS Sens; 2021 Aug; 6(8):2883-2892. PubMed ID: 34237939
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Research progress on detection techniques for point-of-care testing of foodborne pathogens.
    Liu S; Zhao K; Huang M; Zeng M; Deng Y; Li S; Chen H; Li W; Chen Z
    Front Bioeng Biotechnol; 2022; 10():958134. PubMed ID: 36003541
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Research progress in the detection of common foodborne hazardous substances based on functional nucleic acids biosensors.
    Chen Z; Liu Z; Liu J; Xiao X
    Biotechnol Bioeng; 2023 Dec; 120(12):3501-3517. PubMed ID: 37723667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens.
    Tao J; Liu W; Ding W; Han R; Shen Q; Xia Y; Zhang Y; Sun W
    J Food Sci; 2020 Mar; 85(3):744-754. PubMed ID: 31999364
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfluidic enzyme-linked immunosorbent assay technology.
    Lee LJ; Yang ST; Lai S; Bai Y; Huang WC; Juang YJ
    Adv Clin Chem; 2006; 42():255-95. PubMed ID: 17131629
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic chip and isothermal amplification technologies for the detection of pathogenic nucleic acid.
    Gao D; Guo X; Yang Y; Shi H; Hao R; Wang S; Li ZJ; Zhao R; Song H
    J Biol Eng; 2022 Dec; 16(1):33. PubMed ID: 36457138
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples.
    Ngashangva L; Hemdan BA; El-Liethy MA; Bachu V; Minteer SD; Goswami P
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888900
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Research progress of biosensors in the detection of foodborne pathogens].
    Xiao F; Liu R; Zhan Z; Zhang G; Wu X; Xu H
    Sheng Wu Gong Cheng Xue Bao; 2019 Sep; 35(9):1581-1589. PubMed ID: 31559741
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid and label-free identification of single foodborne pathogens using microfluidic pore sensors.
    Yang T; Luo Z; Wu RA; Li L; Xu Y; Ding T; Lin X
    Front Nutr; 2022; 9():959317. PubMed ID: 35990323
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pathogenic Bacteria Detection Using RNA-Based Loop-Mediated Isothermal-Amplification-Assisted Nucleic Acid Amplification via Droplet Microfluidics.
    Azizi M; Zaferani M; Cheong SH; Abbaspourrad A
    ACS Sens; 2019 Apr; 4(4):841-848. PubMed ID: 30908029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computer simulation of submicron fluid flows in microfluidic chips and their applications in food analysis.
    Xie Z; Pu H; Sun DW
    Compr Rev Food Sci Food Saf; 2021 Jul; 20(4):3818-3837. PubMed ID: 34056852
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct or DNA Extraction-Free Amplification and Quantification of Foodborne Pathogens.
    Williams MR; Hashsham SA
    Methods Mol Biol; 2019; 1918():21-33. PubMed ID: 30580396
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Segmented continuous-flow multiplex polymerase chain reaction microfluidics for high-throughput and rapid foodborne pathogen detection.
    Shu B; Zhang C; Xing D
    Anal Chim Acta; 2014 May; 826():51-60. PubMed ID: 24793853
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens.
    Ferrario C; Lugli GA; Ossiprandi MC; Turroni F; Milani C; Duranti S; Mancabelli L; Mangifesta M; Alessandri G; van Sinderen D; Ventura M
    Int J Food Microbiol; 2017 Sep; 256():20-29. PubMed ID: 28578266
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aptamer-Based Technologies in Foodborne Pathogen Detection.
    Teng J; Yuan F; Ye Y; Zheng L; Yao L; Xue F; Chen W; Li B
    Front Microbiol; 2016; 7():1426. PubMed ID: 27672383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.