These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31548156)

  • 21. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of aging-induced flow waveform variation on hemodynamics in aneurysms present at the internal carotid artery: A computational model-based study.
    Xu L; Liang F; Zhao B; Wan J; Liu H
    Comput Biol Med; 2018 Oct; 101():51-60. PubMed ID: 30099239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up.
    Zhang X; Karuna T; Yao ZQ; Duan CZ; Wang XM; Jiang ST; Li XF; Yin JH; He XY; Guo SQ; Chen YC; Liu WC; Li R; Fan HY
    J Neurosurg; 2018 Sep; 131(3):868-875. PubMed ID: 30265195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms.
    Frösen J; Cebral J; Robertson AM; Aoki T
    Neurosurg Focus; 2019 Jul; 47(1):E21. PubMed ID: 31261126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Relative Residence Time on Side-Wall Aneurysm Inception.
    Riccardello GJ; Shastri DN; Changa AR; Thomas KG; Roman M; Prestigiacomo CJ; Gandhi CD
    Neurosurgery; 2018 Sep; 83(3):574-581. PubMed ID: 28945849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture.
    Soldozy S; Norat P; Elsarrag M; Chatrath A; Costello JS; Sokolowski JD; Tvrdik P; Kalani MYS; Park MS
    Neurosurg Focus; 2019 Jul; 47(1):E11. PubMed ID: 31261115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational Fluid Dynamics to Evaluate the Management of a Giant Internal Carotid Artery Aneurysm.
    Russin J; Babiker H; Ryan J; Rangel-Castilla L; Frakes D; Nakaji P
    World Neurosurg; 2015 Jun; 83(6):1057-65. PubMed ID: 25541083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review.
    Saqr KM; Rashad S; Tupin S; Niizuma K; Hassan T; Tominaga T; Ohta M
    J Cereb Blood Flow Metab; 2020 May; 40(5):1021-1039. PubMed ID: 31213162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local Hemodynamic Conditions Associated with Focal Changes in the Intracranial Aneurysm Wall.
    Cebral JR; Detmer F; Chung BJ; Choque-Velasquez J; Rezai B; Lehto H; Tulamo R; Hernesniemi J; Niemela M; Yu A; Williamson R; Aziz K; Shakur S; Amin-Hanjani S; Charbel F; Tobe Y; Robertson A; Frösen J
    AJNR Am J Neuroradiol; 2019 Mar; 40(3):510-516. PubMed ID: 30733253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational Fluid Dynamics Analysis of Carotid-Ophthalmic Aneurysms with Concomitant Ophthalmic Artery Infundibulum in a Patient-Specific Model.
    Ba D; Zhu Z; Yue X; Xu P; Yan P; Xiao D
    World Neurosurg; 2019 May; 125():e1023-e1033. PubMed ID: 30771545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical Analysis of Bifurcation Angles and Branch Patterns in Intracranial Aneurysm Formation.
    Sasaki T; Kakizawa Y; Yoshino M; Fujii Y; Yoroi I; Ichikawa Y; Horiuchi T; Hongo K
    Neurosurgery; 2019 Jul; 85(1):E31-E39. PubMed ID: 30137458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using DFT on ultrasound measurements to determine patient-specific blood flow boundary conditions for computational hemodynamics of intracranial aneurysms.
    Yi H; Yang Z; Bramlage L; Ludwig B
    Comput Biol Med; 2024 Jun; 176():108563. PubMed ID: 38761498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical simulation flow dynamics of an intracranial aneurysm.
    Zhang Y; Fan J; Xiu Y; Zhang L; Chen G; Fan J; Lin X; Ding C; Feng M; Wang R; Liu Y
    Biomed Mater Eng; 2022; 33(2):123-129. PubMed ID: 34633312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hemodynamic and Histopathological Changes in the Early Phase of the Development of an Intracranial Aneurysm.
    Kataoka H; Yagi T; Ikedo T; Imai H; Kawamura K; Yoshida K; Nakamura M; Aoki T; Miyamoto S
    Neurol Med Chir (Tokyo); 2020 Jul; 60(7):319-328. PubMed ID: 32536660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De novo cerebral aneurysm formation associated with proximal stenosis.
    Kono K; Masuo O; Nakao N; Meng H
    Neurosurgery; 2013 Dec; 73(6):E1080-90. PubMed ID: 23839522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses.
    Alfano JM; Kolega J; Natarajan SK; Xiang J; Paluch RA; Levy EI; Siddiqui AH; Meng H
    Neurosurgery; 2013 Sep; 73(3):497-505. PubMed ID: 23756745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current status of computational fluid dynamics for cerebral aneurysms: the clinician's perspective.
    Wong GK; Poon WS
    J Clin Neurosci; 2011 Oct; 18(10):1285-8. PubMed ID: 21795051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wall shear stress at the initiation site of cerebral aneurysms.
    Geers AJ; Morales HG; Larrabide I; Butakoff C; Bijlenga P; Frangi AF
    Biomech Model Mechanobiol; 2017 Feb; 16(1):97-115. PubMed ID: 27440126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of Hemodynamic Characteristics Before Growth in Growing Cerebral Aneurysms by Analyzing Time-of-Flight Magnetic Resonance Angiography Images Alone: Preliminary Results.
    Kimura H; Hayashi K; Taniguchi M; Hosoda K; Fujita A; Seta T; Tomiyama A; Kohmura E
    World Neurosurg; 2019 Feb; 122():e1439-e1448. PubMed ID: 30465954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemodynamics of small aneurysm pairs at the internal carotid artery.
    Jou LD; Morsi H; Shaltoni HM; Mawad ME
    Med Eng Phys; 2012 Dec; 34(10):1454-61. PubMed ID: 22410434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.