These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31548583)

  • 21. Communication in a protein stack: electron transfer between cytochrome c and bilirubin oxidase within a polyelectrolyte multilayer.
    Dronov R; Kurth DG; Möhwald H; Scheller FW; Lisdat F
    Angew Chem Int Ed Engl; 2008; 47(16):3000-3. PubMed ID: 18327863
    [No Abstract]   [Full Text] [Related]  

  • 22. Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells.
    Zeng T; Pankratov D; Falk M; Leimkühler S; Shleev S; Wollenberger U
    Biosens Bioelectron; 2015 Apr; 66():39-42. PubMed ID: 25460879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bilirubin oxidases in bioelectrochemistry: features and recent findings.
    Mano N; Edembe L
    Biosens Bioelectron; 2013 Dec; 50():478-85. PubMed ID: 23911663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced oxidation of bilirubin by an immobilized tri-enzyme system of glucose oxidase, bilirubin oxidase and horseradish peroxidase.
    Daka NJ; Sipehia R; Chang TM
    Biochim Biophys Acta; 1989 Jun; 991(3):487-9. PubMed ID: 2730925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase.
    Sulistyaningdyah WT; Ogawa J; Tanaka H; Maeda C; Shimizu S
    FEMS Microbiol Lett; 2004 Jan; 230(2):209-14. PubMed ID: 14757242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on dioxygen reduction by mutational modifications of the hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase.
    Morishita H; Kurita D; Kataoka K; Sakurai T
    Biochem Biophys Res Commun; 2014 Jul; 450(1):767-72. PubMed ID: 24952160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of N-linked glycans of bilirubin oxidase on direct electron transfer-type bioelectrocatalysis.
    Suzuki Y; Itoh A; Kataoka K; Yamashita S; Kano K; Sowa K; Kitazumi Y; Shirai O
    Bioelectrochemistry; 2022 Aug; 146():108141. PubMed ID: 35594729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Authentic and recombinant bilirubin oxidases are in different resting forms.
    Sakurai T; Zhan L; Fujita T; Kataoka K; Shimizu A; Samejima T; Yamaguchi S
    Biosci Biotechnol Biochem; 2003 May; 67(5):1157-9. PubMed ID: 12834300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Type III Cu mutants of Myrothecium verrucaria bilirubin oxidase.
    Shimizu A; Samejima T; Hirota S; Yamaguchi S; Sakurai N; Sakurai T
    J Biochem; 2003 Jun; 133(6):767-72. PubMed ID: 12869533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability.
    Xu F; Shin W; Brown SH; Wahleithner JA; Sundaram UM; Solomon EI
    Biochim Biophys Acta; 1996 Feb; 1292(2):303-11. PubMed ID: 8597577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of bilirubin oxidation catalysed by bilirubin oxidase in a water-in-oil microemulsion system.
    Oldfield C; Freedman RB
    Eur J Biochem; 1989 Aug; 183(2):347-55. PubMed ID: 2759088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle.
    Sedlak TW; Snyder SH
    Pediatrics; 2004 Jun; 113(6):1776-82. PubMed ID: 15173506
    [No Abstract]   [Full Text] [Related]  

  • 33. Purification and properties of bilirubin oxidase from Myrothecium verrucaria.
    Guo J; Liang XX; Mo PS; Li GX
    Appl Biochem Biotechnol; 1991 Nov; 31(2):135-43. PubMed ID: 1799289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox-Active Glyconanoparticles as Electron Shuttles for Mediated Electron Transfer with Bilirubin Oxidase in Solution.
    Gross AJ; Chen X; Giroud F; Travelet C; Borsali R; Cosnier S
    J Am Chem Soc; 2017 Nov; 139(45):16076-16079. PubMed ID: 29088534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of copper atoms in bilirubin oxidase by spectroscopic analyses.
    Gotoh Y; Kondo Y; Kaji H; Takeda A; Samejima T
    J Biochem; 1989 Oct; 106(4):621-6. PubMed ID: 2606913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bilirubin the beneficent.
    McDonagh A
    Pediatrics; 2004 Dec; 114(6):1741-2; author reply 1742-3. PubMed ID: 15574652
    [No Abstract]   [Full Text] [Related]  

  • 37. Bismuth Vanadate/Bilirubin Oxidase Photo(bio)electrochemical Cells for Unbiased, Light-Triggered Electrical Power Generation.
    Mukha D; Cohen Y; Yehezkeli O
    ChemSusChem; 2020 May; 13(10):2684-2692. PubMed ID: 32067348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase.
    Ramírez P; Mano N; Andreu R; Ruzgas T; Heller A; Gorton L; Shleev S
    Biochim Biophys Acta; 2008 Oct; 1777(10):1364-9. PubMed ID: 18639515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein-Support Interactions for Rationally Designed Bilirubin Oxidase Based Cathode: A Computational Study.
    Matanovic I; Babanova S; Chavez MS; Atanassov P
    J Phys Chem B; 2016 Apr; 120(15):3634-41. PubMed ID: 27015361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The pH dependence of the cathodic peak potential of the active sites in bilirubin oxidase.
    Filip J; Tkac J
    Bioelectrochemistry; 2014 Apr; 96():14-20. PubMed ID: 24361897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.