BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31548693)

  • 1. Near-equilibrium glycolysis supports metabolic homeostasis and energy yield.
    Park JO; Tanner LB; Wei MH; Khana DB; Jacobson TB; Zhang Z; Rubin SA; Li SH; Higgins MB; Stevenson DM; Amador-Noguez D; Rabinowitz JD
    Nat Chem Biol; 2019 Oct; 15(10):1001-1008. PubMed ID: 31548693
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Jacobson TB; Korosh TK; Stevenson DM; Foster C; Maranas C; Olson DG; Lynd LR; Amador-Noguez D
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32184362
    [No Abstract]   [Full Text] [Related]  

  • 3. Increasing the Thermodynamic Driving Force of the Phosphofructokinase Reaction in
    Hon S; Jacobson T; Stevenson DM; Maloney MI; Giannone RJ; Hettich RL; Amador-Noguez D; Olson DG; Lynd LR
    Appl Environ Microbiol; 2022 Nov; 88(22):e0125822. PubMed ID: 36286488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand.
    Shimizu K; Matsuoka Y
    Biotechnol Adv; 2019; 37(2):284-305. PubMed ID: 30576718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of substrate cycling on the ATP yield of sperm glycolysis.
    Hammerstedt RH; Lardy HA
    J Biol Chem; 1983 Jul; 258(14):8759-68. PubMed ID: 6863309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enforcing ATP hydrolysis enhanced anaerobic glycolysis and promoted solvent production in Clostridium acetobutylicum.
    Dai Z; Zhu Y; Dong H; Zhao C; Zhang Y; Li Y
    Microb Cell Fact; 2021 Jul; 20(1):149. PubMed ID: 34325704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.
    Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD
    J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolytic strategy as a tradeoff between energy yield and protein cost.
    Flamholz A; Noor E; Bar-Even A; Liebermeister W; Milo R
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):10039-44. PubMed ID: 23630264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation.
    Thomas S; Fell DA
    Eur J Biochem; 1998 Dec; 258(3):956-67. PubMed ID: 9990313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parallel glycolysis provides a selective advantage through rapid growth acceleration.
    Law RC; Nurwono G; Park JO
    Nat Chem Biol; 2024 Mar; 20(3):314-322. PubMed ID: 37537378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Fructose Utilization and Butanol Production by Clostridium acetobutylicum via Extracellular Redox Potential Regulation and Intracellular Metabolite Analysis.
    Chen LJ; Wu YD; Xue C; Bai FW
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing metabolic interactions in a clostridial co-culture for consolidated bioprocessing.
    Salimi F; Mahadevan R
    BMC Biotechnol; 2013 Nov; 13():95. PubMed ID: 24188120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage.
    Park JO; Rubin SA; Xu YF; Amador-Noguez D; Fan J; Shlomi T; Rabinowitz JD
    Nat Chem Biol; 2016 Jul; 12(7):482-9. PubMed ID: 27159581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Fluxes of Nitrogen and Pyrophosphate in Chemostat Cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Holwerda EK; Zhou J; Hon S; Stevenson DM; Amador-Noguez D; Lynd LR; van Dijken JP
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978139
    [No Abstract]   [Full Text] [Related]  

  • 15. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells.
    Mulukutla BC; Yongky A; Grimm S; Daoutidis P; Hu WS
    PLoS One; 2015; 10(3):e0121561. PubMed ID: 25806512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Homeostasis in Life as We Know It: Its Origin and Thermodynamic Basis.
    Wilson DF; Matschinsky FM
    Front Physiol; 2021; 12():658997. PubMed ID: 33967829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration.
    Mauro C; Leow SC; Anso E; Rocha S; Thotakura AK; Tornatore L; Moretti M; De Smaele E; Beg AA; Tergaonkar V; Chandel NS; Franzoso G
    Nat Cell Biol; 2011 Aug; 13(10):1272-9. PubMed ID: 21968997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of glycolytic flux control intrinsic to human phosphoglycerate kinase.
    Yagi H; Kasai T; Rioual E; Ikeya T; Kigawa T
    Proc Natl Acad Sci U S A; 2021 Dec; 118(50):. PubMed ID: 34893542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining
    Hollinshead WD; Rodriguez S; Martin HG; Wang G; Baidoo EE; Sale KL; Keasling JD; Mukhopadhyay A; Tang YJ
    Biotechnol Biofuels; 2016; 9():212. PubMed ID: 27766116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture.
    Guedon E; Desvaux M; Petitdemange H
    J Bacteriol; 2000 Apr; 182(7):2010-7. PubMed ID: 10715010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.