These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31548693)

  • 41. Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum.
    Amador-Noguez D; Brasg IA; Feng XJ; Roquet N; Rabinowitz JD
    Appl Environ Microbiol; 2011 Nov; 77(22):7984-97. PubMed ID: 21948824
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pathway thermodynamics highlights kinetic obstacles in central metabolism.
    Noor E; Bar-Even A; Flamholz A; Reznik E; Liebermeister W; Milo R
    PLoS Comput Biol; 2014 Feb; 10(2):e1003483. PubMed ID: 24586134
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Brain Endothelial Cells: Metabolic Flux and Energy Metabolism.
    McDonald CJ; Blankenheim ZJ; Drewes LR
    Handb Exp Pharmacol; 2022; 273():59-79. PubMed ID: 34251530
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The functional recovery of post-ischemic myocardium requires glycolysis during early reperfusion.
    Jeremy RW; Ambrosio G; Pike MM; Jacobus WE; Becker LC
    J Mol Cell Cardiol; 1993 Mar; 25(3):261-76. PubMed ID: 8510169
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide.
    Hyslop PA; Hinshaw DB; Halsey WA; Schraufstätter IU; Sauerheber RD; Spragg RG; Jackson JH; Cochrane CG
    J Biol Chem; 1988 Feb; 263(4):1665-75. PubMed ID: 3338986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermodynamic constraints on the regulation of metabolic fluxes.
    Dai Z; Locasale JW
    J Biol Chem; 2018 Dec; 293(51):19725-19739. PubMed ID: 30361440
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon and energy metabolism of atp mutants of Escherichia coli.
    Jensen PR; Michelsen O
    J Bacteriol; 1992 Dec; 174(23):7635-41. PubMed ID: 1447134
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia.
    Desvaux M
    FEMS Microbiol Rev; 2005 Sep; 29(4):741-64. PubMed ID: 16102601
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure.
    Wilkins HM; Koppel S; Carl SM; Ramanujan S; Weidling I; Michaelis ML; Michaelis EK; Swerdlow RH
    J Neurochem; 2016 Apr; 137(1):76-87. PubMed ID: 26811028
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spare mitochondrial respiratory capacity permits human adipocytes to maintain ATP homeostasis under hypoglycemic conditions.
    Keuper M; Jastroch M; Yi CX; Fischer-Posovszky P; Wabitsch M; Tschöp MH; Hofmann SM
    FASEB J; 2014 Feb; 28(2):761-70. PubMed ID: 24200885
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of precise control of flux ratio between the glycolytic pathways on mevalonate production in Escherichia coli.
    Kamata K; Toya Y; Shimizu H
    Biotechnol Bioeng; 2019 May; 116(5):1080-1088. PubMed ID: 30636280
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of control of heart glycolysis.
    Depré C; Rider MH; Hue L
    Eur J Biochem; 1998 Dec; 258(2):277-90. PubMed ID: 9874192
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression of genes encoding F(1)-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis.
    Koebmann BJ; Solem C; Pedersen MB; Nilsson D; Jensen PR
    Appl Environ Microbiol; 2002 Sep; 68(9):4274-82. PubMed ID: 12200276
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary ¹³C flux analysis.
    Jordà J; Suarez C; Carnicer M; ten Pierick A; Heijnen JJ; van Gulik W; Ferrer P; Albiol J; Wahl A
    BMC Syst Biol; 2013 Feb; 7():17. PubMed ID: 23448228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions.
    Larsson C; Nilsson A; Blomberg A; Gustafsson L
    J Bacteriol; 1997 Dec; 179(23):7243-50. PubMed ID: 9393686
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum.
    Dash S; Olson DG; Joshua Chan SH; Amador-Noguez D; Lynd LR; Maranas CD
    Metab Eng; 2019 Sep; 55():161-169. PubMed ID: 31220663
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The glycolytic flux in Escherichia coli is controlled by the demand for ATP.
    Koebmann BJ; Westerhoff HV; Snoep JL; Nilsson D; Jensen PR
    J Bacteriol; 2002 Jul; 184(14):3909-16. PubMed ID: 12081962
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing.
    Salimi F; Zhuang K; Mahadevan R
    Biotechnol J; 2010 Jul; 5(7):726-38. PubMed ID: 20665645
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flux analysis and control of the central metabolic pathways in Escherichia coli.
    Holms H
    FEMS Microbiol Rev; 1996 Dec; 19(2):85-116. PubMed ID: 8988566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli.
    Hädicke O; von Kamp A; Aydogan T; Klamt S
    PLoS Comput Biol; 2018 Sep; 14(9):e1006492. PubMed ID: 30248096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.