These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31548987)

  • 1. Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures.
    Grönquist P; Wood D; Hassani MM; Wittel FK; Menges A; Rüggeberg M
    Sci Adv; 2019 Sep; 5(9):eaax1311. PubMed ID: 31548987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational analysis of hygromorphic self-shaping wood gridshell structures.
    Grönquist P; Panchadcharam P; Wood D; Menges A; Rüggeberg M; Wittel FK
    R Soc Open Sci; 2020 Jul; 7(7):192210. PubMed ID: 32874613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programming material compliance and actuation: hybrid additive fabrication of biocomposite structures for large-scale self-shaping.
    Cheng T; Wood D; Kiesewetter L; Özdemir E; Antorveza K; Menges A
    Bioinspir Biomim; 2021 Nov; 16(5):. PubMed ID: 34198272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive Timber Manufacturing: A Novel, Wood-Based Filament and Its Additive Robotic Fabrication Techniques for Large-Scale, Material-Efficient Construction.
    Eversmann P; Ochs J; Heise J; Akbar Z; Böhm S
    3D Print Addit Manuf; 2022 Jun; 9(3):161-176. PubMed ID: 36655205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-Destructive and Non-Destructive Tests of Timber Structure of Various Moisture Contents.
    Jaskowska-Lemańska J; Przesmycka E
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33379353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of moisture-induced cracks in wooden cross sections using finite element simulations.
    Brandstätter F; Autengruber M; Lukacevic M; Füssl J
    Wood Sci Technol; 2023; 57(3):671-701. PubMed ID: 37201163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of time-dependent swelling of flexible polymer substrates using hygro-mechanical finite element simulations.
    Pyo JB; Lee TI; Kim C; Kim MS; Kim TS
    Soft Matter; 2016 May; 12(18):4135-41. PubMed ID: 27067252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moisture-sensitive mechanical metamaterials with unusual and re-programmable hygroscopic deformation modes.
    Bai Y; Liu C; Li Y; Li J; Qiao L; Zhou J; Bai Y
    Mater Horiz; 2022 Oct; 9(11):2835-2845. PubMed ID: 36043385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular reprogrammable 3D mechanical metamaterials with unusual hygroscopic deformation modes.
    Bai Y; Liu C; Li Y; Li J; Qiao L; Zhou J; Bai Y
    Mater Horiz; 2023 Oct; 10(10):4470-4479. PubMed ID: 37526630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of geographical location on moisture distribution in wood cross sections: a numerical simulation study using Austria as an example.
    Brandstätter F; Autengruber M; Lukacevic M; Füssl J
    J Wood Sci; 2024; 70(1):35. PubMed ID: 39257695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and design of thin bending wooden bilayers.
    Grönquist P; Wittel FK; Rüggeberg M
    PLoS One; 2018; 13(10):e0205607. PubMed ID: 30325938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic Assembly of Timber Structures in a Human-Robot Collaboration Setup.
    Kramberger A; Kunic A; Iturrate I; Sloth C; Naboni R; Schlette C
    Front Robot AI; 2021; 8():768038. PubMed ID: 35155587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry.
    Kumar M; Shakher C
    Appl Opt; 2016 Feb; 55(5):960-8. PubMed ID: 26906359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review on Wood Deformation and Cracking during Moisture Loss.
    Fu Z; Chen J; Zhang Y; Xie F; Lu Y
    Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings.
    Moron C; Garcia-Fuentevilla L; Garcia A; Moron A
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Verification of Thermal Insulation in Timber Framed Walls.
    Michálková D; Ďurica P
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A large-scale image dataset of wood surface defects for automated vision-based quality control processes.
    Kodytek P; Bodzas A; Bilik P
    F1000Res; 2021; 10():581. PubMed ID: 35903217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transport of liquids in softwood: timber as a model porous medium.
    Burridge HC; Wu G; Reynolds T; Shah DU; Johnston R; Scherman OA; Ramage MH; Linden PF
    Sci Rep; 2019 Dec; 9(1):20282. PubMed ID: 31889063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction Distribution Model of Moisture Content in Laminated Wood Components.
    Tian P; Han J; Guo S; Di J; Han X
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hygrothermic Wood Actuated Robotic Hand.
    Bai L; Zhang Y; Guo S; Qu H; Yu Z; Yu H; Chen W; Tan SC
    Adv Mater; 2023 Jun; 35(22):e2211437. PubMed ID: 36843238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.