These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31549507)

  • 1. Utilizing Machine Learning for Efficient Parameterization of Coarse Grained Molecular Force Fields.
    McDonagh JL; Shkurti A; Bray DJ; Anderson RL; Pyzer-Knapp EO
    J Chem Inf Model; 2019 Oct; 59(10):4278-4288. PubMed ID: 31549507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-Grained Models for Automated Fragmentation and Parametrization of Molecular Databases.
    Fraaije JG; van Male J; Becherer P; Serral Gracià R
    J Chem Inf Model; 2016 Dec; 56(12):2361-2377. PubMed ID: 27806564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic properties for applications in chemical industry via classical force fields.
    Guevara-Carrion G; Hasse H; Vrabec J
    Top Curr Chem; 2012; 307():201-49. PubMed ID: 21678137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model Selection Using BICePs: A Bayesian Approach for Force Field Validation and Parameterization.
    Ge Y; Voelz VA
    J Phys Chem B; 2018 May; 122(21):5610-5622. PubMed ID: 29518328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations.
    Müller EA; Jackson G
    Annu Rev Chem Biomol Eng; 2014; 5():405-27. PubMed ID: 24702297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory-based training enables protein simulations with accurate folding and Boltzmann ensembles in cpu-hours.
    Jumper JM; Faruk NF; Freed KF; Sosnick TR
    PLoS Comput Biol; 2018 Dec; 14(12):e1006578. PubMed ID: 30589834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Successful Parameter Region for Coarse-Grained Simulation of Biomolecules by Bayesian Optimization and Active Learning.
    Kanada R; Tokuhisa A; Tsuda K; Okuno Y; Terayama K
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32245275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Maximum-Likelihood Approach to Force-Field Calibration.
    Zaborowski B; Jagieła D; Czaplewski C; Hałabis A; Lewandowska A; Żmudzińska W; Ołdziej S; Karczyńska A; Omieczynski C; Wirecki T; Liwo A
    J Chem Inf Model; 2015 Sep; 55(9):2050-70. PubMed ID: 26263302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learned coarse-grained protein force-fields: Are we there yet?
    Durumeric AEP; Charron NE; Templeton C; Musil F; Bonneau K; Pasos-Trejo AS; Chen Y; Kelkar A; Noé F; Clementi C
    Curr Opin Struct Biol; 2023 Apr; 79():102533. PubMed ID: 36731338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics: Application to Materials and Biological Systems.
    Gkeka P; Stoltz G; Barati Farimani A; Belkacemi Z; Ceriotti M; Chodera JD; Dinner AR; Ferguson AL; Maillet JB; Minoux H; Peter C; Pietrucci F; Silveira A; Tkatchenko A; Trstanova Z; Wiewiora R; Lelièvre T
    J Chem Theory Comput; 2020 Aug; 16(8):4757-4775. PubMed ID: 32559068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrastive Learning of Coarse-Grained Force Fields.
    Ding X; Zhang B
    J Chem Theory Comput; 2022 Oct; 18(10):6334-6344. PubMed ID: 36112935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Directed Optimization of Classical Molecular Modeling Force Fields.
    Befort BJ; DeFever RS; Tow GM; Dowling AW; Maginn EJ
    J Chem Inf Model; 2021 Sep; 61(9):4400-4414. PubMed ID: 34402301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implicit-solvent dissipative particle dynamics force field based on a four-to-one coarse-grained mapping scheme.
    Wan M; Gao L; Fang W
    PLoS One; 2018; 13(5):e0198049. PubMed ID: 29795682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Coarse-Grained Protein Force Fields with Small-Angle X-ray Scattering Data.
    Latham AP; Zhang B
    J Phys Chem B; 2019 Feb; 123(5):1026-1034. PubMed ID: 30620594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameterization of a reactive force field using a Monte Carlo algorithm.
    Iype E; Hütter M; Jansen AP; Nedea SV; Rindt CC
    J Comput Chem; 2013 May; 34(13):1143-54. PubMed ID: 23420666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse-Grained Force Field Calibration Based on Multiobjective Bayesian Optimization to Simulate Water Diffusion in Poly-ε-caprolactone.
    Sestito JM; Thatcher ML; Shu L; Harris TAL; Wang Y
    J Phys Chem A; 2020 Jun; 124(24):5042-5052. PubMed ID: 32452682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient optimization of van der Waals parameters from bulk properties.
    Burger SK; Cisneros GA
    J Comput Chem; 2013 Oct; 34(27):2313-9. PubMed ID: 23828265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary Algorithm in the Optimization of a Coarse-Grained Force Field.
    Leonarski F; Trovato F; Tozzini V; Leś A; Trylska J
    J Chem Theory Comput; 2013 Nov; 9(11):4874-89. PubMed ID: 26583407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: a bottom-up approach.
    Trément S; Schnell B; Petitjean L; Couty M; Rousseau B
    J Chem Phys; 2014 Apr; 140(13):134113. PubMed ID: 24712786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.